Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ENH: Series.str.split can return a DataFrame instead of Series of lists #8663

Merged
merged 1 commit into from
Oct 29, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.15.1.txt
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,7 @@ Enhancements

- Added support for 3-character ISO and non-standard country codes in :func:``io.wb.download()`` (:issue:`8482`)
- :ref:`World Bank data requests <remote_data.wb>` now will warn/raise based on an ``errors`` argument, as well as a list of hard-coded country codes and the World Bank's JSON response. In prior versions, the error messages didn't look at the World Bank's JSON response. Problem-inducing input were simply dropped prior to the request. The issue was that many good countries were cropped in the hard-coded approach. All countries will work now, but some bad countries will raise exceptions because some edge cases break the entire response. (:issue:`8482`)
- Added option to ``Series.str.split()`` to return a ``DataFrame`` rather than a ``Series`` (:issue:`8428`)

.. _whatsnew_0151.performance:

Expand Down
18 changes: 13 additions & 5 deletions pandas/core/strings.py
Original file line number Diff line number Diff line change
Expand Up @@ -621,7 +621,7 @@ def str_center(arr, width):
return str_pad(arr, width, side='both')


def str_split(arr, pat=None, n=None):
def str_split(arr, pat=None, n=None, return_type='series'):
"""
Split each string (a la re.split) in array by given pattern, propagating NA
values
Expand All @@ -631,6 +631,9 @@ def str_split(arr, pat=None, n=None):
pat : string, default None
String or regular expression to split on. If None, splits on whitespace
n : int, default None (all)
return_type : {'series', 'frame'}, default 'series
If frame, returns a DataFrame (elements are strings)
If series, returns an Series (elements are lists of strings).

Notes
-----
Expand All @@ -640,6 +643,8 @@ def str_split(arr, pat=None, n=None):
-------
split : array
"""
if return_type not in ('series', 'frame'):
raise ValueError("return_type must be {'series', 'frame'}")
if pat is None:
if n is None or n == 0:
n = -1
Expand All @@ -654,8 +659,11 @@ def str_split(arr, pat=None, n=None):
n = 0
regex = re.compile(pat)
f = lambda x: regex.split(x, maxsplit=n)

return _na_map(f, arr)
if return_type == 'frame':
res = DataFrame((Series(x) for x in _na_map(f, arr)), index=arr.index)
else:
res = _na_map(f, arr)
return res


def str_slice(arr, start=None, stop=None, step=1):
Expand Down Expand Up @@ -937,8 +945,8 @@ def cat(self, others=None, sep=None, na_rep=None):
return self._wrap_result(result)

@copy(str_split)
def split(self, pat=None, n=-1):
result = str_split(self.series, pat, n=n)
def split(self, pat=None, n=-1, return_type='series'):
result = str_split(self.series, pat, n=n, return_type=return_type)
return self._wrap_result(result)

@copy(str_get)
Expand Down
28 changes: 28 additions & 0 deletions pandas/tests/test_strings.py
Original file line number Diff line number Diff line change
Expand Up @@ -873,6 +873,34 @@ def test_split_no_pat_with_nonzero_n(self):
expected = Series({0: ['split', 'once'], 1: ['split', 'once too!']})
tm.assert_series_equal(expected, result)

def test_split_to_dataframe(self):
s = Series(['nosplit', 'alsonosplit'])
result = s.str.split('_', return_type='frame')
exp = DataFrame({0: Series(['nosplit', 'alsonosplit'])})
tm.assert_frame_equal(result, exp)

s = Series(['some_equal_splits', 'with_no_nans'])
result = s.str.split('_', return_type='frame')
exp = DataFrame({0: ['some', 'with'], 1: ['equal', 'no'],
2: ['splits', 'nans']})
tm.assert_frame_equal(result, exp)

s = Series(['some_unequal_splits', 'one_of_these_things_is_not'])
result = s.str.split('_', return_type='frame')
exp = DataFrame({0: ['some', 'one'], 1: ['unequal', 'of'],
2: ['splits', 'these'], 3: [NA, 'things'],
4: [NA, 'is'], 5: [NA, 'not']})
tm.assert_frame_equal(result, exp)

s = Series(['some_splits', 'with_index'], index=['preserve', 'me'])
result = s.str.split('_', return_type='frame')
exp = DataFrame({0: ['some', 'with'], 1: ['splits', 'index']},
index=['preserve', 'me'])
tm.assert_frame_equal(result, exp)

with tm.assertRaisesRegexp(ValueError, "return_type must be"):
s.str.split('_', return_type="some_invalid_type")

def test_pipe_failures(self):
# #2119
s = Series(['A|B|C'])
Expand Down