Implement cbnet with mmdetection. Please clone mmdet1.1.0 (other versions may need modifications), place the files(cbnet.py, resnet_vd.py, non_local.py, etc.) in the right directory.
arch | backbone | Lr schd | box AP | download |
---|---|---|---|---|
cascade_rcnn | dual resnet_vd200 + dcnv2 + nonlocal | 2.5x | 52.2(soft-nms) | Google Drive |
On COCO val2017
cascade_rcnn + dual res2net101 + dcnv2 + fpn + 1x
: 48.8 mAP
- Single scale training and testing
cascade_rcnn + dual resnet_vd200 + dcnv2 + nonlocal + fpn + 2.5x + soft-nms
: 52.2 mAP
- Multiscale-training, single-scale testing
- Weights are transfered from CBResNet200-vd-FPN-Nonlocal in paddle detection
- mAP with vanilla nms: 50.8
non_local.py
is modified to adapt NonLocal
module from paddledetection to mmdetection
backbone=dict(
type='CBNet',
backbone_type='ResNet_VD',
num_repeat=2,
connect_norm_eval=True,
depth=200,
out_indices=(0, 1, 2, 3),
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
dcn=dict(type='DCNv2', deformable_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, True, True, True),
stage_with_non_local=(False, False, True, False),
frozen_stages=1,
style='pytorch')
To get the pretrained model on imagenet like dual_xxx.pth
:
def make_pretrained_model(input_path, output_path, repeat_num=2):
cp = torch.load(input_path)
keys = list(cp['state_dict'].keys())
for key in keys:
for i in range(repeat_num):
cp['state_dict']['cb{}.{}'.format(i + 1, key)] = cp['state_dict'][key]
cp['state_dict'].pop(key)
torch.save(cp, output_path)
- get the numpy-array-style weights in paddle detection
from paddle import fluid
import os
from ppdet.core.workspace import load_config, create
import ppdet.utils.checkpoint as checkpoint
import numpy as np
from collections import OrderedDict
import torch
def load_var_dict(cfg_path, weight_path, device_id=-1):
place = fluid.CUDAPlace(0) if device_id >= 0 else fluid.CPUPlace()
exe = fluid.Executor(place)
cfg = load_config(cfg_path)
main_arch = cfg.architecture
model = create(main_arch)
startup_prog = fluid.Program()
infer_prog = fluid.Program()
with fluid.program_guard(infer_prog, startup_prog):
with fluid.unique_name.guard():
inputs_def = cfg['TestReader']['inputs_def']
inputs_def['iterable'] = True
feed_vars, loader = model.build_inputs(**inputs_def)
_ = model.test(feed_vars)
checkpoint.load_params(exe, infer_prog, weight_path)
var_dict = {}
for var in startup_prog.list_vars():
fluid_tensor = fluid.global_scope().find_var(var.name).get_tensor()
var_dict[var.name] = np.array(fluid_tensor)
return var_dict
- Implement same models in mmdet, and do name mapping for variables.