Skip to content

pascalxia/driver_attention_prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Driver Attention Prediction Model

Downloading Dataset:

The Berkeley DeepDrive Attention dataset can be downloaded here: https://bdd-data.berkeley.edu/. Click on the "Download Dataset" to get to the user portal and then you will find the BDD-Attention dataset listed together with other Berkeley DeepDrive video datasets.

Project Introduction:

This project accompanies the paper Predicting Driver Attention in Critical Situations (https://arxiv.org/abs/1711.06406)

Demo:

Demo image

Video demos

Video demo cover

Model structure

Model structure image

Using Our Code:

Dependencies

The code was written with Tensorflow 1.5, Keras 2.1.5 and some other common packages. A Docker image (blindgrandpa/tf150_kr215) was prepared for running the code. The Dockerfile of that Docker image is at ./docker_images/tf150_kr215/ in this repo. The Dockerfile lists all the dependencies. In order to use this Docker image to run our code, you need to have nvidia-docker installed.

Use our model to do inference on your videos

If you want to use our model to generate predicted driver attention maps for your videos, please follow the steps below.

  1. Put your videos into the directory ./data/inference/camera_videos/

  2. Parse your videos into frames. Please run the following command to parse your videos into frames. video_suffix should be the suffix of your video files. sample_rate is for how many frames per second you want to have predicted attention maps. 3 Hz is recommended. We assume that there is no underscore in the names of your video files.

python parse_videos.py \
--video_dir=data/inference/camera_videos \
--image_dir=data/inference/camera_images \
--sample_rate=3 \
--video_suffix=.mp4
  1. Convert video frames to Tensorflow tfrecords files. All the video frames will be divided into n_divides tfrecords files. The frames of each video will be divided into groups that have at most longest_seq frames. You can change longest_seq according to the memory size of your computer.
python write_tfrecords_for_inference.py \
--data_dir=data/inference \
--n_divides=2 \
--longest_seq=35
  1. Download the pre-trained weights. Download this zip file and unzip it to ./

  2. Download the pre-trained weights of Alexnet. Downlaod bvlc_alexnet.npy and put it at ./

  3. Predict driver attention maps by runnning the following command. The predicted attention maps will be at ./pretrained_models/model_for_inference/prediction_iter_0/. The files will be named in the pattern "VideoName_TimeInMilliseconds.jpg".

python infer.py \
--data_dir=data \
--model_dir=pretrained_models/model_for_inference

Train our model from scratch with your data

If you want to train our model from scratch with your videos, please follow the steps below.

  1. Put your camera videos and gaze map videos of your training set and validation set into the following directories ./data/training/camera_videos/, ./data/training/gazemap_videos/, ./data/validation/camera_videos/ and ./data/validation/gazemap_videos/

  2. Parse your videos into frames. Please run the following commands to parse your videos into frames. video_suffix should be the suffix of your video files. sample_rate is for how many frames per second you want to have predicted attention maps. 3 Hz is recommended. We assume that there is no underscore in the names of your video files.

python parse_videos.py \
--video_dir=data/training/camera_videos \
--image_dir=data/training/camera_images \
--sample_rate=3 \
--video_suffix=.mp4

python parse_videos.py \
--video_dir=data/training/gazemap_videos \
--image_dir=data/training/gazemap_images \
--sample_rate=3 \
--video_suffix=.mp4

python parse_videos.py \
--video_dir=data/validation/camera_videos \
--image_dir=data/validation/camera_images \
--sample_rate=3 \
--video_suffix=.mp4

python parse_videos.py \
--video_dir=data/validation/gazemap_videos \
--image_dir=data/validation/gazemap_images \
--sample_rate=3 \
--video_suffix=.mp4
  1. Convert video frames to Tensorflow tfrecords files. All the video frames will be divided into n_divides tfrecords files. The frames of each video will be divided into groups that have at most longest_seq frames. You can change longest_seq according to the memory size of your computer.
python write_tfrecords_for_inference.py \
--data_dir=data/training \
--n_divides=2 \
--longest_seq=35

python write_tfrecords_for_inference.py \
--data_dir=data/validation \
--n_divides=2 \
--longest_seq=35
  1. Download the pre-trained weights of Alexnet. Downlaod bvlc_alexnet.npy and put it at ./

  2. Since our model uses pretrained AlexNet as a feature extractor and fixes this module during training, we first calculate AlexNet features of the input camera videos to save training time.

python make_feature_maps.py \
--data_dir=data/training \
--model_dir=pretrained_models/model_for_inference

python make_feature_maps.py \
--data_dir=data/validation \
--model_dir=pretrained_models/model_for_inference
  1. Generate Tensorflow tfrecords files that contain camera frames, AlexNet features and ground-truth gaze maps. image_size is the size of the image shown in Tensorboard. It is not the size of the image fed to the model.
python write_tfrecords.py \
--data_dir=data/training \
--n_divides=2 \
--feature_name=alexnet \
--image_size 288 512 \
--longest_seq=35

python write_tfrecords.py \
--data_dir=data/training \
--n_divides=2 \
--feature_name=alexnet \
--image_size 288 512 \
--longest_seq=35
  1. Training. Replace a_name_for_this_experiment with another folder name you like.
python train.py \
--data_dir=data \
--model_dir=logs/a_name_for_this_experiment \
--batch_size=10 \
--n_steps=6 \
--feature_name=alexnet \
--train_epochs=500 \
--epochs_before_validation=3 \
--image_size 288 512 \
--feature_map_channels=256 \
--quick_summary_period=20 \
--slow_summary_period=100
  1. Track the training in Tensorboard.
tensorboard --logdir=logs/a_name_for_this_experiment

In the images tag you can see the training input camera frame, ground-truth gaze map and the predicted attention map (for training set).

Fine-tune our model from scratch with your data

If you want to fine-tune our model with your data, please follow the steps described in the previous section Train our model from scratch with your data, and also add these additional steps before step 7:

6.1. Download the pre-trained weights. Download this zip file and unzip it to ./

6.2. Copy the pre-trained model to a new folder where you want to save your fine-tuned model

cp pretrained_models/model_for_finetuning/* logs/a_name_for_this_experiment/

Test a trained model with your testing data

If you want to test a trained model with your testing data, please first prepare your testing data by following the steps 1 to 6 drscribed in the section Train our model from scratch with your data, but replace the folder name training or validation in the structions by testing. Then all the files related to your testing data should be under the folder data/testing. Then let us assume that the log files of the trained model are in the folder logs/a_name_for_this_experiment. Then please run the following command.

python predict.py \
--data_dir=data \
--model_dir=logs/a_name_for_this_experiment \
--batch_size=1 \
--feature_name=alexnet \
--feature_map_channels=256

The predicted attention maps will be at ./logs/a_name_for_this_experiment/prediction_iter_*/. The files will be named in the pattern "VideoName_TimeInMilliseconds.jpg".

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published