Skip to content

Git repo for my article published in Environmental Pollution in 2023 on prenatal exposure to triclosan and placental DNA methylation

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE.html
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

paujedynak/jedynak_prenatal_2023

Repository files navigation

Prenatal exposure to triclosan assessed in multiple urine samples and placental DNA methylation

Article info

Repository contains reproducible analyses for the paper: Jedynak et al., 2023.

Analysis overview

Analyses depend on R (>= 4.3.0).

Code used to produce the files is found in the corresponding file: jedynak_prenatal_2023.Rmd (executable file).

This analysis was performed under Windows 11 x64 (build 22621) using:

Packages

All packages used in the analyses are saved in the renv/library/R-4.3/x86_64-w64-mingw32 folder at the version used to produce these results, under control of the renv package manager. Re-running the analysis requires execution of renv::restore() which will upgrade/ downgrade user's packages to the versions used in the present study. This operation will modify the packages only locally (for the project), so it will not affect user's package library. All "in-house" packages are available in the R/ folder.

To run

Re-running the analysis requires an additional data/raw_data folder that is not shared here. These data can only be provided upon request and after approval by the SEPAGES consortium (contact: Sarah Lyon-Caen). Running the script: jedynak_prenatal_2023.Rmd will allow to fully reproduce the analyses, figures and tables.

Repo organization

data/raw_data/ folder

Analysis input data-files are not made available as they contain sensitive information. The analysis input data files would be:

  • data_sepages_211022.sas7bdat = covariates data, including potential confounders, n = 484
  • phenols_phthalates_pregnancy_mr_2020-03-26_448.csv = phenols exposure data, n = 479
  • bmiq_processed.RDS = methylation data (no replicates, 814,481 CpGs, not filtered, normalized using BMIQ method), n = 395
  • SEPAGES_SampleSheet_nodup_20211208.csv = DNA methylation measurement technical factors (batch, plate, chip), n = 395
  • SEPAGES_CC.planet_rpc.csv = placental cell mix proportions
  • data_nsample_230314.Rdata = data on number of urine samples per pool

Additional file EWAS_rep_nl_FDR.RDS is not available in the repo due to its large size.

R/ folder

This folder contains all the in-house functions and packages used for the analyses.

Session info

R version 4.3.1 (2023-06-16 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 11 x64 (build 22621)

Matrix products: default


locale:
[1] LC_COLLATE=English_Europe.utf8  LC_CTYPE=English_Europe.utf8   
[3] LC_MONETARY=English_Europe.utf8 LC_NUMERIC=C                   
[5] LC_TIME=English_Europe.utf8    

time zone: Europe/Madrid
tzcode source: internal

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices datasets  utils    
[8] methods   base     

other attached packages:
 [1] lubridate_1.9.2                                    
 [2] forcats_1.0.0                                      
 [3] stringr_1.5.0                                      
 [4] dplyr_1.1.2                                        
 [5] purrr_1.0.1                                        
 [6] readr_2.1.4                                        
 [7] tidyr_1.3.0                                        
 [8] tibble_3.2.1                                       
 [9] tidyverse_2.0.0                                    
[10] scales_1.2.1                                       
[11] RobustRegressions_1.5.1                            
[12] robCompositions_2.3.1                              
[13] data.table_1.14.8                                  
[14] pls_2.8-2                                          
[15] rio_0.5.29                                         
[16] Plots_1.3                                          
[17] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
[18] minfi_1.46.0                                       
[19] bumphunter_1.42.0                                  
[20] locfit_1.5-9.8                                     
[21] iterators_1.0.14                                   
[22] foreach_1.5.2                                      
[23] Biostrings_2.68.1                                  
[24] XVector_0.40.0                                     
[25] SummarizedExperiment_1.30.2                        
[26] Biobase_2.60.0                                     
[27] MatrixGenerics_1.12.2                              
[28] matrixStats_1.0.0                                  
[29] GenomicRanges_1.52.0                               
[30] GenomeInfoDb_1.36.1                                
[31] IRanges_2.34.1                                     
[32] S4Vectors_0.38.1                                   
[33] BiocGenerics_0.46.0                                
[34] magrittr_2.0.3                                     
[35] janitor_2.2.0                                      
[36] Hmisc_5.1-0                                        
[37] here_1.0.1                                         
[38] Helpers_0.1.0                                      
[39] ggrepel_0.9.3                                      
[40] ggpubr_0.6.0                                       
[41] DMR_0.1.3                                          
[42] ccmm_1.0                                           
[43] bacon_1.28.0                                       
[44] ellipse_0.5.0                                      
[45] BiocParallel_1.34.2                                
[46] ggplot2_3.4.2                                      

loaded via a namespace (and not attached):
  [1] dichromat_2.0-0.1         progress_1.2.2           
  [3] pacman_0.5.1              nnet_7.3-19              
  [5] HDF5Array_1.28.1          TH.data_1.1-2            
  [7] vctrs_0.6.3               digest_0.6.33            
  [9] png_0.1-8                 proxy_0.4-27             
 [11] pcaPP_2.0-3               corrplot_0.92            
 [13] deldir_1.0-9              renv_1.0.0               
 [15] hdrcde_3.4                MASS_7.3-60              
 [17] reshape_0.8.9             withr_2.5.0              
 [19] psych_2.3.6               xfun_0.39                
 [21] survival_3.5-5            doRNG_1.8.6              
 [23] memoise_2.0.1             diptest_0.76-0           
 [25] MatrixModels_0.5-2        zoo_1.8-12               
 [27] DEoptimR_1.1-0            Formula_1.2-5            
 [29] prettyunits_1.1.1         GGally_2.1.2             
 [31] prabclus_2.3-2            KEGGREST_1.40.0          
 [33] httr_1.4.6                bigparallelr_0.3.2       
 [35] rstatix_0.7.2             restfulr_0.0.15          
 [37] hash_2.2.6.2              cvTools_0.3.2            
 [39] rhdf5filters_1.12.1       fpc_2.2-10               
 [41] rhdf5_2.44.0              rstudioapi_0.15.0        
 [43] generics_0.1.3            base64enc_0.1-3          
 [45] curl_5.0.1                sfsmisc_1.1-15           
 [47] mitools_2.4               zlibbioc_1.46.0          
 [49] GenomeInfoDbData_1.2.10   quadprog_1.5-8           
 [51] rms_6.7-0                 doParallel_1.0.17        
 [53] xtable_1.8-4              pracma_2.4.2             
 [55] evaluate_0.21             S4Arrays_1.0.5           
 [57] BiocFileCache_2.8.0       preprocessCore_1.62.1    
 [59] hms_1.1.3                 colorspace_2.1-0         
 [61] filelock_1.0.2            readxl_1.4.3             
 [63] flexmix_2.3-19            lmtest_0.9-40            
 [65] snakecase_0.11.0          modeltools_0.2-23        
 [67] lattice_0.21-8            genefilter_1.82.1        
 [69] robustbase_0.99-0         SparseM_1.81             
 [71] cowplot_1.1.1             survey_4.2-1             
 [73] XML_3.99-0.14             class_7.3-22             
 [75] pillar_1.9.0              nlme_3.1-162             
 [77] compiler_4.3.1            stringi_1.7.12           
 [79] GenomicAlignments_1.36.0  plyr_1.8.8               
 [81] fda_6.1.4                 crayon_1.5.2             
 [83] abind_1.4-5               BiocIO_1.10.0            
 [85] truncnorm_1.0-9           flock_0.7                
 [87] haven_2.5.3               sp_2.0-0                 
 [89] bit_4.0.5                 sandwich_3.0-2           
 [91] multcomp_1.4-25           bigassertr_0.1.6         
 [93] codetools_0.2-19          perry_0.3.1              
 [95] openssl_2.1.0             ggfortify_0.4.16         
 [97] e1071_1.7-13              biovizBase_1.48.0        
 [99] fds_1.8                   multtest_2.56.0          
[101] splines_4.3.1             Rcpp_1.0.11              
[103] fastDummies_1.7.3         quantreg_5.96            
[105] dbplyr_2.3.3              sparseMatrixStats_1.12.2 
[107] cellranger_1.1.0          interp_1.1-4             
[109] knitr_1.43                blob_1.2.4               
[111] utf8_1.2.3                AnnotationFilter_1.24.0  
[113] checkmate_2.2.0           DelayedMatrixStats_1.22.1
[115] Gviz_1.44.0               openxlsx_4.2.5.2         
[117] ggsignif_0.6.4            Matrix_1.6-0             
[119] tzdb_0.4.0                pkgconfig_2.0.3          
[121] tools_4.3.1               cachem_1.0.8             
[123] RSQLite_2.3.1             NADA_1.6-1.1             
[125] DBI_1.1.3                 fastmap_1.1.1            
[127] rmarkdown_2.23            grid_4.3.1               
[129] Rsamtools_2.16.0          broom_1.0.5              
[131] xlsx_0.6.5                BiocManager_1.30.21.1    
[133] VariantAnnotation_1.46.0  carData_3.0-5            
[135] scrime_1.3.5              rpart_4.1.19             
[137] yaml_2.3.7                deSolve_1.36             
[139] latticeExtra_0.6-30       foreign_0.8-84           
[141] rtracklayer_1.60.0        illuminaio_0.42.0        
[143] cli_3.6.1                 siggenes_1.74.0          
[145] GEOquery_2.68.0           lifecycle_1.0.3          
[147] askpass_1.1               rainbow_3.7              
[149] mvtnorm_1.2-2             kernlab_0.9-32           
[151] backports_1.4.1           annotate_1.78.0          
[153] timechange_0.2.0          gtable_0.3.3             
[155] rjson_0.2.21              ggridges_0.5.4           
[157] limma_3.56.2              bitops_1.0-7             
[159] bit64_4.0.5               base64_2.0.1             
[161] zip_2.3.0                 ranger_0.15.1            
[163] polspline_1.1.23          rrcov_1.7-4              
[165] coMET_1.32.0              lazyeval_0.2.2           
[167] bigstatsr_1.5.12          zCompositions_1.4.0-1    
[169] htmltools_0.5.5           rJava_1.0-6              
[171] rappdirs_0.3.3            ensembldb_2.24.0         
[173] glue_1.6.2                VIM_6.2.2                
[175] RCurl_1.98-1.12           rprojroot_2.0.3          
[177] mclust_6.0.0              ks_1.14.0                
[179] mnormt_2.1.1              BSgenome_1.68.0          
[181] jpeg_0.1-10               gridExtra_2.3            
[183] boot_1.3-28.1             R6_2.5.1                 
[185] vcd_1.4-11                xlsxjars_0.6.1           
[187] GenomicFeatures_1.52.1    cluster_2.1.4            
[189] rngtools_1.5.2            Rhdf5lib_1.22.0          
[191] beanplot_1.3.1            robustHD_0.7.4           
[193] DelayedArray_0.26.6       tidyselect_1.2.0         
[195] ProtGenerics_1.32.0       htmlTable_2.4.1          
[197] xml2_1.3.5                QCEWAS_1.2-3             
[199] car_3.1-2                 AnnotationDbi_1.62.2     
[201] munsell_0.5.0             KernSmooth_2.23-22       
[203] laeken_0.5.2              nor1mix_1.3-0            
[205] htmlwidgets_1.6.2         RColorBrewer_1.1-3       
[207] biomaRt_2.56.1            rlang_1.1.1              
[209] fansi_1.0.4

About

Git repo for my article published in Environmental Pollution in 2023 on prenatal exposure to triclosan and placental DNA methylation

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE.html
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published