Babrahamlinkon is a tool for the analysis of immunoglobulin receptor sequences from NGS data generated using the DNA VDJ-seq assay.
Chovanec, P., Bolland, D.J., Matheson, L.S., Wood, A.L., Corcoran, A.E. (2018). Unbiased quantification of immunoglobulin diversity at the DNA level with VDJ-seq. Nat. Protoc. 13, 1232–1252.
Matheson, L.S., Bolland, D.J., Chovanec, P., Krueger, F., Andrews, S., Koohy, H., and Corcoran, A. (2017). Local chromatin features including PU.1 and IKAROS binding and H3K4 methylation shape the repertoire of immunoglobulin kappa genes chosen for V(D)J recombination. Front. Immunol. 8, 1550.
Bolland, D.J., Koohy, H., Wood, A.L., Matheson, L.S., Krueger, F., Stubbington, M.J.T., Baizan-Edge, A., Chovanec, P., Stubbs, B.A., Tabbada, K., Andrews, S.R., Spivakov, M., Corcoran, A.E. (2016). Two Mutually Exclusive Local Chromatin States Drive Efficient V(D)J Recombination. Cell Rep. 15, 2475–2487.
Babrahamlinkon is only compatible with Python 3.
With bioconda (recommended) or follow tool specific instructions available on their website:
conda install igblast
conda install samtools
conda install bowtie2
Ubuntu install:
sudo apt-get install kalign
BabrahamLinkON is dependent on:
- numpy>=1.11.0,
- pandas>=0.18.1,
- scikit-bio>=0.5.0,
- python-Levenshtein>=0.12.0,
- pysam>=0.9.1.3,
- joblib>=0.9.3,
- changeo>=0.3.7,
- tqdm>=4.13.0,
- weblogo>=3.6.0.
Installation time with all dependencies: ~5 minutes
export BOWTIE2_INDEXES='/path/to/bowtie2/indexes'
export BOWTIE2_REF='Basename_of_reference'
If running in cluster enviroment:
#Home directory
export home='/path/to/working/directory'
#Folder for all the log/output files
export log_folder=${home}/logs
#matplotlib backend for headless nodes
export MPLBACKEND=pdf
#specify tmp dir (needed for nodes as they don't have much memory)
export TMPDIR='/state/partition1'
I would recommend installing BabrahamLinkON within its own virtual enviroment:
conda env create -f environment.yml
conda activate babrahamlinkon
To install Babrahamlinkon straight from the git repository:
git clone https://github.com/peterch405/BabrahamLinkON
cd BabrahamLinkON
pip install .
preclean.py umi -v <v_end.fastq> -j <j_end_fastq> --species <mmu or hsa or mmuk> --threads <int> --umi_len <int>
deduplicate.py umi --input_dir <preclean output directory> --stats --threads <int>
assemble_clones.py umi -fa <fasta from deduplication> --full_name --threads <int> --species <mmu or hsa or mmuk>
Partis expects sequences to be input in the VDJ direction. BabrahamLinkON returns reads in the JDV orientation. To make the fasta/q compatible with partis, simply run:
deduplicate.py reverse_complement --input <fasta/q file or directory of files>
If providing a fastq, use the --fq
flag.
A small dataset can be found in the test folder. This can be used to test your installation:
. run_test
The expected output is in expected_test_output
folder
Run time for test data on a i7-4790 running on all 8 threads: ~9 minutes