-
Notifications
You must be signed in to change notification settings - Fork 5.8k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
planner: change predicateColumnCollector to columnStatsUsageCollector and collect histogram-needed columns #30671
Changes from 10 commits
b8aacf0
58a46fe
14fc7b8
f716767
cf91ae5
bf0ff94
7e2cb16
3e0da0e
9de2fe1
608046c
0a1245e
92aab0b
a9c6432
e4cdf25
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -19,27 +19,46 @@ import ( | |
"github.com/pingcap/tidb/parser/model" | ||
) | ||
|
||
// predicateColumnCollector collects predicate columns from logical plan. Predicate columns are the columns whose statistics | ||
// are utilized when making query plans, which usually occur in where conditions, join conditions and so on. | ||
type predicateColumnCollector struct { | ||
// colMap maps expression.Column.UniqueID to the table columns whose statistics are utilized to calculate statistics of the column. | ||
colMap map[int64]map[model.TableColumnID]struct{} | ||
const ( | ||
collectPredicateColumns uint64 = 1 << iota | ||
collectHistNeededColumns | ||
) | ||
|
||
// columnStatsUsageCollector collects predicate columns and/or histogram-needed columns from logical plan. | ||
// Predicate columns are the columns whose statistics are utilized when making query plans, which usually occur in where conditions, join conditions and so on. | ||
// Histogram-needed columns are the columns whose histograms are utilized when making query plans, which usually occur in the conditions pushed down to DataSource. | ||
// The set of histogram-needed columns is the subset of that of predicate columns. | ||
type columnStatsUsageCollector struct { | ||
// collectMode indicates whether to collect predicate columns and/or histogram-needed columns | ||
collectMode uint64 | ||
// predicateCols records predicate columns. | ||
predicateCols map[model.TableColumnID]struct{} | ||
// colMap maps expression.Column.UniqueID to the table columns whose statistics are utilized to calculate statistics of the column. | ||
// It is used for collecting predicate columns. | ||
colMap map[int64]map[model.TableColumnID]struct{} | ||
// histNeededCols records histogram-needed columns | ||
histNeededCols map[model.TableColumnID]struct{} | ||
// cols is used to store columns collected from expressions and saves some allocation. | ||
cols []*expression.Column | ||
} | ||
|
||
func newPredicateColumnCollector() *predicateColumnCollector { | ||
return &predicateColumnCollector{ | ||
colMap: make(map[int64]map[model.TableColumnID]struct{}), | ||
predicateCols: make(map[model.TableColumnID]struct{}), | ||
func newColumnStatsUsageCollector(collectMode uint64) *columnStatsUsageCollector { | ||
collector := &columnStatsUsageCollector{ | ||
collectMode: collectMode, | ||
// Pre-allocate a slice to reduce allocation, 8 doesn't have special meaning. | ||
cols: make([]*expression.Column, 0, 8), | ||
} | ||
if collectMode&collectPredicateColumns != 0 { | ||
collector.predicateCols = make(map[model.TableColumnID]struct{}) | ||
collector.colMap = make(map[int64]map[model.TableColumnID]struct{}) | ||
} | ||
if collectMode&collectHistNeededColumns != 0 { | ||
collector.histNeededCols = make(map[model.TableColumnID]struct{}) | ||
} | ||
return collector | ||
} | ||
|
||
func (c *predicateColumnCollector) addPredicateColumn(col *expression.Column) { | ||
func (c *columnStatsUsageCollector) addPredicateColumn(col *expression.Column) { | ||
tblColIDs, ok := c.colMap[col.UniqueID] | ||
if !ok { | ||
// It may happen if some leaf of logical plan is LogicalMemTable/LogicalShow/LogicalShowDDLJobs. | ||
|
@@ -50,21 +69,21 @@ func (c *predicateColumnCollector) addPredicateColumn(col *expression.Column) { | |
} | ||
} | ||
|
||
func (c *predicateColumnCollector) addPredicateColumnsFromExpression(expr expression.Expression) { | ||
func (c *columnStatsUsageCollector) addPredicateColumnsFromExpression(expr expression.Expression) { | ||
cols := expression.ExtractColumnsAndCorColumns(c.cols[:0], expr) | ||
for _, col := range cols { | ||
c.addPredicateColumn(col) | ||
} | ||
} | ||
|
||
func (c *predicateColumnCollector) addPredicateColumnsFromExpressions(list []expression.Expression) { | ||
func (c *columnStatsUsageCollector) addPredicateColumnsFromExpressions(list []expression.Expression) { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can we merge this part? It seems the only difference is whether the expression is a slice or not. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done. |
||
cols := expression.ExtractColumnsAndCorColumnsFromExpressions(c.cols[:0], list) | ||
for _, col := range cols { | ||
c.addPredicateColumn(col) | ||
} | ||
} | ||
|
||
func (c *predicateColumnCollector) updateColMap(col *expression.Column, relatedCols []*expression.Column) { | ||
func (c *columnStatsUsageCollector) updateColMap(col *expression.Column, relatedCols []*expression.Column) { | ||
if _, ok := c.colMap[col.UniqueID]; !ok { | ||
c.colMap[col.UniqueID] = map[model.TableColumnID]struct{}{} | ||
} | ||
|
@@ -80,15 +99,15 @@ func (c *predicateColumnCollector) updateColMap(col *expression.Column, relatedC | |
} | ||
} | ||
|
||
func (c *predicateColumnCollector) updateColMapFromExpression(col *expression.Column, expr expression.Expression) { | ||
func (c *columnStatsUsageCollector) updateColMapFromExpression(col *expression.Column, expr expression.Expression) { | ||
c.updateColMap(col, expression.ExtractColumnsAndCorColumns(c.cols[:0], expr)) | ||
} | ||
|
||
func (c *predicateColumnCollector) updateColMapFromExpressions(col *expression.Column, list []expression.Expression) { | ||
func (c *columnStatsUsageCollector) updateColMapFromExpressions(col *expression.Column, list []expression.Expression) { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Ditto. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done. |
||
c.updateColMap(col, expression.ExtractColumnsAndCorColumnsFromExpressions(c.cols[:0], list)) | ||
} | ||
|
||
func (ds *DataSource) updateColMapAndAddPredicateColumns(c *predicateColumnCollector) { | ||
func (c *columnStatsUsageCollector) collectPredicateColumnsForDataSource(ds *DataSource) { | ||
tblID := ds.TableInfo().ID | ||
for _, col := range ds.Schema().Columns { | ||
tblColID := model.TableColumnID{TableID: tblID, ColumnID: col.ID} | ||
|
@@ -98,7 +117,7 @@ func (ds *DataSource) updateColMapAndAddPredicateColumns(c *predicateColumnColle | |
c.addPredicateColumnsFromExpressions(ds.pushedDownConds) | ||
} | ||
|
||
func (p *LogicalJoin) updateColMapAndAddPredicateColumns(c *predicateColumnCollector) { | ||
func (c *columnStatsUsageCollector) collectPredicateColumnsForJoin(p *LogicalJoin) { | ||
// The only schema change is merging two schemas so there is no new column. | ||
// Assume statistics of all the columns in EqualConditions/LeftConditions/RightConditions/OtherConditions are needed. | ||
exprs := make([]expression.Expression, 0, len(p.EqualConditions)+len(p.LeftConditions)+len(p.RightConditions)+len(p.OtherConditions)) | ||
|
@@ -117,7 +136,7 @@ func (p *LogicalJoin) updateColMapAndAddPredicateColumns(c *predicateColumnColle | |
c.addPredicateColumnsFromExpressions(exprs) | ||
} | ||
|
||
func (p *LogicalUnionAll) updateColMapAndAddPredicateColumns(c *predicateColumnCollector) { | ||
func (c *columnStatsUsageCollector) collectPredicateColumnsForUnionAll(p *LogicalUnionAll) { | ||
// statistics of the ith column of UnionAll come from statistics of the ith column of each child. | ||
schemas := make([]*expression.Schema, 0, len(p.Children())) | ||
relatedCols := make([]*expression.Column, 0, len(p.Children())) | ||
|
@@ -133,120 +152,143 @@ func (p *LogicalUnionAll) updateColMapAndAddPredicateColumns(c *predicateColumnC | |
} | ||
} | ||
|
||
func (c *predicateColumnCollector) collectFromPlan(lp LogicalPlan) { | ||
func (c *columnStatsUsageCollector) addHistNeededColumns(ds *DataSource) { | ||
columns := expression.ExtractColumnsFromExpressions(c.cols[:0], ds.pushedDownConds, nil) | ||
for _, col := range columns { | ||
tblColID := model.TableColumnID{TableID: ds.physicalTableID, ColumnID: col.ID} | ||
c.histNeededCols[tblColID] = struct{}{} | ||
} | ||
} | ||
|
||
func (c *columnStatsUsageCollector) collectFromPlan(lp LogicalPlan) { | ||
for _, child := range lp.Children() { | ||
c.collectFromPlan(child) | ||
} | ||
switch x := lp.(type) { | ||
case *DataSource: | ||
x.updateColMapAndAddPredicateColumns(c) | ||
case *LogicalIndexScan: | ||
x.Source.updateColMapAndAddPredicateColumns(c) | ||
// TODO: Is it redundant to add predicate columns from LogicalIndexScan.AccessConds? Is LogicalIndexScan.AccessConds a subset of LogicalIndexScan.Source.pushedDownConds. | ||
c.addPredicateColumnsFromExpressions(x.AccessConds) | ||
case *LogicalTableScan: | ||
x.Source.updateColMapAndAddPredicateColumns(c) | ||
// TODO: Is it redundant to add predicate columns from LogicalTableScan.AccessConds? Is LogicalTableScan.AccessConds a subset of LogicalTableScan.Source.pushedDownConds. | ||
c.addPredicateColumnsFromExpressions(x.AccessConds) | ||
case *TiKVSingleGather: | ||
// TODO: Is it redundant? | ||
x.Source.updateColMapAndAddPredicateColumns(c) | ||
case *LogicalProjection: | ||
// Schema change from children to self. | ||
schema := x.Schema() | ||
for i, expr := range x.Exprs { | ||
c.updateColMapFromExpression(schema.Columns[i], expr) | ||
} | ||
case *LogicalSelection: | ||
// Though the conditions in LogicalSelection are complex conditions which cannot be pushed down to DataSource, we still | ||
// regard statistics of the columns in the conditions as needed. | ||
c.addPredicateColumnsFromExpressions(x.Conditions) | ||
case *LogicalAggregation: | ||
// Just assume statistics of all the columns in GroupByItems are needed. | ||
c.addPredicateColumnsFromExpressions(x.GroupByItems) | ||
// Schema change from children to self. | ||
schema := x.Schema() | ||
for i, aggFunc := range x.AggFuncs { | ||
c.updateColMapFromExpressions(schema.Columns[i], aggFunc.Args) | ||
} | ||
case *LogicalWindow: | ||
// Statistics of the columns in LogicalWindow.PartitionBy are used in optimizeByShuffle4Window. | ||
// It seems that we don't use statistics of the columns in LogicalWindow.OrderBy currently? | ||
for _, item := range x.PartitionBy { | ||
c.addPredicateColumn(item.Col) | ||
} | ||
// Schema change from children to self. | ||
windowColumns := x.GetWindowResultColumns() | ||
for i, col := range windowColumns { | ||
c.updateColMapFromExpressions(col, x.WindowFuncDescs[i].Args) | ||
} | ||
case *LogicalJoin: | ||
x.updateColMapAndAddPredicateColumns(c) | ||
case *LogicalApply: | ||
x.updateColMapAndAddPredicateColumns(c) | ||
// Assume statistics of correlated columns are needed. | ||
// Correlated columns can be found in LogicalApply.Children()[0].Schema(). Since we already visit LogicalApply.Children()[0], | ||
// correlated columns must have existed in predicateColumnCollector.colMap. | ||
for _, corCols := range x.CorCols { | ||
c.addPredicateColumn(&corCols.Column) | ||
} | ||
case *LogicalSort: | ||
// Assume statistics of all the columns in ByItems are needed. | ||
for _, item := range x.ByItems { | ||
c.addPredicateColumnsFromExpression(item.Expr) | ||
} | ||
case *LogicalTopN: | ||
// Assume statistics of all the columns in ByItems are needed. | ||
for _, item := range x.ByItems { | ||
c.addPredicateColumnsFromExpression(item.Expr) | ||
} | ||
case *LogicalUnionAll: | ||
x.updateColMapAndAddPredicateColumns(c) | ||
case *LogicalPartitionUnionAll: | ||
x.updateColMapAndAddPredicateColumns(c) | ||
case *LogicalCTE: | ||
// Visit seedPartLogicalPlan and recursivePartLogicalPlan first. | ||
c.collectFromPlan(x.cte.seedPartLogicalPlan) | ||
if x.cte.recursivePartLogicalPlan != nil { | ||
c.collectFromPlan(x.cte.recursivePartLogicalPlan) | ||
} | ||
// Schema change from seedPlan/recursivePlan to self. | ||
columns := x.Schema().Columns | ||
seedColumns := x.cte.seedPartLogicalPlan.Schema().Columns | ||
var recursiveColumns []*expression.Column | ||
if x.cte.recursivePartLogicalPlan != nil { | ||
recursiveColumns = x.cte.recursivePartLogicalPlan.Schema().Columns | ||
} | ||
relatedCols := make([]*expression.Column, 0, 2) | ||
for i, col := range columns { | ||
relatedCols = append(relatedCols[:0], seedColumns[i]) | ||
if recursiveColumns != nil { | ||
relatedCols = append(relatedCols, recursiveColumns[i]) | ||
if c.collectMode&collectPredicateColumns != 0 { | ||
switch x := lp.(type) { | ||
case *DataSource: | ||
c.collectPredicateColumnsForDataSource(x) | ||
case *LogicalIndexScan: | ||
c.collectPredicateColumnsForDataSource(x.Source) | ||
c.addPredicateColumnsFromExpressions(x.AccessConds) | ||
case *LogicalTableScan: | ||
c.collectPredicateColumnsForDataSource(x.Source) | ||
c.addPredicateColumnsFromExpressions(x.AccessConds) | ||
case *LogicalProjection: | ||
// Schema change from children to self. | ||
schema := x.Schema() | ||
for i, expr := range x.Exprs { | ||
c.updateColMapFromExpression(schema.Columns[i], expr) | ||
} | ||
c.updateColMap(col, relatedCols) | ||
} | ||
// If IsDistinct is true, then we use getColsNDV to calculate row count(see (*LogicalCTE).DeriveStat). In this case | ||
// statistics of all the columns are needed. | ||
if x.cte.IsDistinct { | ||
for _, col := range columns { | ||
c.addPredicateColumn(col) | ||
case *LogicalSelection: | ||
// Though the conditions in LogicalSelection are complex conditions which cannot be pushed down to DataSource, we still | ||
// regard statistics of the columns in the conditions as needed. | ||
c.addPredicateColumnsFromExpressions(x.Conditions) | ||
case *LogicalAggregation: | ||
// Just assume statistics of all the columns in GroupByItems are needed. | ||
c.addPredicateColumnsFromExpressions(x.GroupByItems) | ||
// Schema change from children to self. | ||
schema := x.Schema() | ||
for i, aggFunc := range x.AggFuncs { | ||
c.updateColMapFromExpressions(schema.Columns[i], aggFunc.Args) | ||
} | ||
case *LogicalWindow: | ||
// Statistics of the columns in LogicalWindow.PartitionBy are used in optimizeByShuffle4Window. | ||
// We don't use statistics of the columns in LogicalWindow.OrderBy currently. | ||
for _, item := range x.PartitionBy { | ||
c.addPredicateColumn(item.Col) | ||
} | ||
// Schema change from children to self. | ||
windowColumns := x.GetWindowResultColumns() | ||
for i, col := range windowColumns { | ||
c.updateColMapFromExpressions(col, x.WindowFuncDescs[i].Args) | ||
} | ||
case *LogicalJoin: | ||
c.collectPredicateColumnsForJoin(x) | ||
case *LogicalApply: | ||
c.collectPredicateColumnsForJoin(&x.LogicalJoin) | ||
// Assume statistics of correlated columns are needed. | ||
// Correlated columns can be found in LogicalApply.Children()[0].Schema(). Since we already visit LogicalApply.Children()[0], | ||
// correlated columns must have existed in columnStatsUsageCollector.colMap. | ||
for _, corCols := range x.CorCols { | ||
c.addPredicateColumn(&corCols.Column) | ||
} | ||
case *LogicalSort: | ||
// Assume statistics of all the columns in ByItems are needed. | ||
for _, item := range x.ByItems { | ||
c.addPredicateColumnsFromExpression(item.Expr) | ||
} | ||
case *LogicalTopN: | ||
// Assume statistics of all the columns in ByItems are needed. | ||
for _, item := range x.ByItems { | ||
c.addPredicateColumnsFromExpression(item.Expr) | ||
} | ||
case *LogicalUnionAll: | ||
c.collectPredicateColumnsForUnionAll(x) | ||
case *LogicalPartitionUnionAll: | ||
c.collectPredicateColumnsForUnionAll(&x.LogicalUnionAll) | ||
case *LogicalCTE: | ||
// Visit seedPartLogicalPlan and recursivePartLogicalPlan first. | ||
c.collectFromPlan(x.cte.seedPartLogicalPlan) | ||
if x.cte.recursivePartLogicalPlan != nil { | ||
c.collectFromPlan(x.cte.recursivePartLogicalPlan) | ||
} | ||
// Schema change from seedPlan/recursivePlan to self. | ||
columns := x.Schema().Columns | ||
seedColumns := x.cte.seedPartLogicalPlan.Schema().Columns | ||
var recursiveColumns []*expression.Column | ||
if x.cte.recursivePartLogicalPlan != nil { | ||
recursiveColumns = x.cte.recursivePartLogicalPlan.Schema().Columns | ||
} | ||
relatedCols := make([]*expression.Column, 0, 2) | ||
for i, col := range columns { | ||
relatedCols = append(relatedCols[:0], seedColumns[i]) | ||
if recursiveColumns != nil { | ||
relatedCols = append(relatedCols, recursiveColumns[i]) | ||
} | ||
c.updateColMap(col, relatedCols) | ||
} | ||
// If IsDistinct is true, then we use getColsNDV to calculate row count(see (*LogicalCTE).DeriveStat). In this case | ||
// statistics of all the columns are needed. | ||
if x.cte.IsDistinct { | ||
for _, col := range columns { | ||
c.addPredicateColumn(col) | ||
} | ||
} | ||
case *LogicalCTETable: | ||
// Schema change from seedPlan to self. | ||
for i, col := range x.Schema().Columns { | ||
c.updateColMap(col, []*expression.Column{x.seedSchema.Columns[i]}) | ||
} | ||
} | ||
case *LogicalCTETable: | ||
// Schema change from seedPlan to self. | ||
for i, col := range x.Schema().Columns { | ||
c.updateColMap(col, []*expression.Column{x.seedSchema.Columns[i]}) | ||
} | ||
if c.collectMode&collectHistNeededColumns != 0 { | ||
// Histogram-needed columns are the columns which occur in the conditions pushed down to DataSource. | ||
// We don't consider LogicalCTE because seedLogicalPlan and recursiveLogicalPlan haven't got logical optimization | ||
// yet(seedLogicalPlan and recursiveLogicalPlan are optimized in DeriveStats phase). Without logical optimization, | ||
// there is no condition pushed down to DataSource so no histogram-needed column can be collected. | ||
switch x := lp.(type) { | ||
case *DataSource: | ||
c.addHistNeededColumns(x) | ||
case *LogicalIndexScan: | ||
c.addHistNeededColumns(x.Source) | ||
case *LogicalTableScan: | ||
c.addHistNeededColumns(x.Source) | ||
} | ||
} | ||
} | ||
|
||
// CollectPredicateColumnsForTest collects predicate columns from logical plan. It is only for test. | ||
func CollectPredicateColumnsForTest(lp LogicalPlan) []model.TableColumnID { | ||
collector := newPredicateColumnCollector() | ||
// CollectColumnStatsUsage collects column stats usage from logical plan. | ||
// The first return value is predicate columns and the second return value is histogram-needed columns. | ||
func CollectColumnStatsUsage(lp LogicalPlan) ([]model.TableColumnID, []model.TableColumnID) { | ||
collector := newColumnStatsUsageCollector(collectPredicateColumns | collectHistNeededColumns) | ||
collector.collectFromPlan(lp) | ||
tblColIDs := make([]model.TableColumnID, 0, len(collector.predicateCols)) | ||
for tblColID := range collector.predicateCols { | ||
tblColIDs = append(tblColIDs, tblColID) | ||
set2slice := func(set map[model.TableColumnID]struct{}) []model.TableColumnID { | ||
ret := make([]model.TableColumnID, 0, len(set)) | ||
for tblColID := range set { | ||
ret = append(ret, tblColID) | ||
} | ||
return ret | ||
} | ||
return tblColIDs | ||
return set2slice(collector.predicateCols), set2slice(collector.histNeededCols) | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you add more comments about the special cases to explain this? It's not easy to understand why an
expression.Column.UniqueID
needs more table columns to calculate.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done.