-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add segment-wiki script #1483
Add segment-wiki script #1483
Changes from all commits
c7b8a8a
11691bb
fb83ef2
102c0df
29302a4
ef3b094
8eda36b
3c9f0d0
e40f8c9
1f923e2
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
:mod:`scripts.segment_wiki` -- Convert wikipedia dump to json-line format | ||
========================================================================= | ||
|
||
.. automodule:: gensim.scripts.segment_wiki | ||
:synopsis: Convert wikipedia dump to json-line format. | ||
:members: | ||
:inherited-members: | ||
:undoc-members: | ||
:show-inheritance: |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,246 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
# | ||
# Author: Jayant Jain <jayant@rare-technologies.com> | ||
# Copyright (C) 2016 RaRe Technologies | ||
|
||
""" | ||
Construct a corpus from a Wikipedia (or other MediaWiki-based) database dump and extract sections of pages from it | ||
and save to json-line format. | ||
|
||
If you have the `pattern` package installed, this module will use a fancy | ||
lemmatization to get a lemma of each token (instead of plain alphabetic | ||
tokenizer). The package is available at https://github.com/clips/pattern . | ||
|
||
""" | ||
|
||
import argparse | ||
import json | ||
import logging | ||
import multiprocessing | ||
import re | ||
import sys | ||
from xml.etree import cElementTree | ||
|
||
from gensim.corpora.wikicorpus import ARTICLE_MIN_WORDS, IGNORED_NAMESPACES, WikiCorpus, \ | ||
filter_wiki, get_namespace, tokenize, utils | ||
from smart_open import smart_open | ||
|
||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
def segment_all_articles(file_path): | ||
"""Extract article titles and sections from a MediaWiki bz2 database dump. | ||
|
||
Parameters | ||
---------- | ||
file_path : str | ||
Path to MediaWiki dump, typical filename is <LANG>wiki-<YYYYMMDD>-pages-articles.xml.bz2 | ||
or <LANG>wiki-latest-pages-articles.xml.bz2. | ||
|
||
Yields | ||
------ | ||
(str, list of (str, str)) | ||
Structure contains (title, [(section_heading, section_content), ...]). | ||
|
||
""" | ||
with smart_open(file_path, 'rb') as xml_fileobj: | ||
wiki_sections_corpus = WikiSectionsCorpus(xml_fileobj) | ||
wiki_sections_corpus.metadata = True | ||
wiki_sections_text = wiki_sections_corpus.get_texts_with_sections() | ||
for article_title, article_sections in wiki_sections_text: | ||
yield article_title, article_sections | ||
|
||
|
||
def segment_and_print_all_articles(file_path, output_file): | ||
"""Write article title and sections to output_file, | ||
output_file is json-line file with 3 fields:: | ||
|
||
'tl' - title of article, | ||
'st' - list of titles of sections, | ||
'sc' - list of content from sections. | ||
|
||
Parameters | ||
---------- | ||
file_path : str | ||
Path to MediaWiki dump, typical filename is <LANG>wiki-<YYYYMMDD>-pages-articles.xml.bz2 | ||
or <LANG>wiki-latest-pages-articles.xml.bz2. | ||
|
||
output_file : str | ||
Path to output file. | ||
|
||
""" | ||
with smart_open(output_file, 'w') as outfile: | ||
for idx, (article_title, article_sections) in enumerate(segment_all_articles(file_path)): | ||
output_data = {"tl": article_title, "st": [], "sc": []} | ||
for section_heading, section_content in article_sections: | ||
output_data["st"].append(section_heading) | ||
output_data["sc"].append(section_content) | ||
if (idx + 1) % 100000 == 0: | ||
logger.info("Processed #%d articles", idx + 1) | ||
outfile.write(json.dumps(output_data) + "\n") | ||
|
||
|
||
def extract_page_xmls(f): | ||
"""Extract pages from a MediaWiki database dump. | ||
|
||
Parameters | ||
---------- | ||
f : file | ||
File descriptor of MediaWiki dump. | ||
|
||
Yields | ||
------ | ||
str | ||
XML strings for page tags. | ||
|
||
""" | ||
elems = (elem for _, elem in cElementTree.iterparse(f, events=("end",))) | ||
|
||
elem = next(elems) | ||
namespace = get_namespace(elem.tag) | ||
ns_mapping = {"ns": namespace} | ||
page_tag = "{%(ns)s}page" % ns_mapping | ||
|
||
for elem in elems: | ||
if elem.tag == page_tag: | ||
yield cElementTree.tostring(elem) | ||
# Prune the element tree, as per | ||
# http://www.ibm.com/developerworks/xml/library/x-hiperfparse/ | ||
# except that we don't need to prune backlinks from the parent | ||
# because we don't use LXML. | ||
# We do this only for <page>s, since we need to inspect the | ||
# ./revision/text element. The pages comprise the bulk of the | ||
# file, so in practice we prune away enough. | ||
elem.clear() | ||
|
||
|
||
def segment(page_xml): | ||
"""Parse the content inside a page tag | ||
|
||
Parameters | ||
---------- | ||
page_xml : str | ||
Content from page tag. | ||
|
||
Returns | ||
------- | ||
(str, list of (str, str)) | ||
Structure contains (title, [(section_heading, section_content)]). | ||
|
||
""" | ||
elem = cElementTree.fromstring(page_xml) | ||
filter_namespaces = ('0',) | ||
namespace = get_namespace(elem.tag) | ||
ns_mapping = {"ns": namespace} | ||
text_path = "./{%(ns)s}revision/{%(ns)s}text" % ns_mapping | ||
title_path = "./{%(ns)s}title" % ns_mapping | ||
ns_path = "./{%(ns)s}ns" % ns_mapping | ||
lead_section_heading = "Introduction" | ||
top_level_heading_regex = r"\n==[^=].*[^=]==\n" | ||
top_level_heading_regex_capture = r"\n==([^=].*[^=])==\n" | ||
|
||
title = elem.find(title_path).text | ||
text = elem.find(text_path).text | ||
ns = elem.find(ns_path).text | ||
if ns not in filter_namespaces: | ||
text = None | ||
|
||
if text is not None: | ||
section_contents = re.split(top_level_heading_regex, text) | ||
section_headings = [lead_section_heading] + re.findall(top_level_heading_regex_capture, text) | ||
assert len(section_contents) == len(section_headings) | ||
else: | ||
section_contents = [] | ||
section_headings = [] | ||
|
||
section_contents = [filter_wiki(section_content) for section_content in section_contents] | ||
sections = list(zip(section_headings, section_contents)) | ||
return title, sections | ||
|
||
|
||
class WikiSectionsCorpus(WikiCorpus): | ||
"""Treat a wikipedia articles dump (<LANG>wiki-<YYYYMMDD>-pages-articles.xml.bz2 | ||
or <LANG>wiki-latest-pages-articles.xml.bz2) as a (read-only) corpus. | ||
|
||
The documents are extracted on-the-fly, so that the whole (massive) dump can stay compressed on disk. | ||
|
||
""" | ||
def __init__(self, fileobj, processes=None, lemmatize=utils.has_pattern(), filter_namespaces=('0',)): | ||
""" | ||
Parameters | ||
---------- | ||
fileobj : file | ||
File descriptor of MediaWiki dump. | ||
processes : int | ||
Number of processes, max(1, multiprocessing.cpu_count() - 1) if None. | ||
lemmatize : bool | ||
If `pattern` package is installed, use fancier shallow parsing to get token lemmas. | ||
Otherwise, use simple regexp tokenization. | ||
filter_namespaces : tuple of int | ||
Enumeration of namespaces that will be ignored. | ||
|
||
""" | ||
self.fileobj = fileobj | ||
self.filter_namespaces = filter_namespaces | ||
self.metadata = False | ||
if processes is None: | ||
processes = max(1, multiprocessing.cpu_count() - 1) | ||
self.processes = processes | ||
self.lemmatize = lemmatize | ||
|
||
def get_texts_with_sections(self): | ||
"""Iterate over the dump, returning titles and text versions of all sections of articles. | ||
|
||
Notes | ||
----- | ||
Only articles of sufficient length are returned (short articles & redirects | ||
etc are ignored). | ||
|
||
Note that this iterates over the **texts**; if you want vectors, just use | ||
the standard corpus interface instead of this function:: | ||
|
||
>>> for vec in wiki_corpus: | ||
>>> print(vec) | ||
|
||
Yields | ||
------ | ||
(str, list of (str, str)) | ||
Structure contains (title, [(section_heading, section_content), ...]). | ||
|
||
""" | ||
articles = 0 | ||
page_xmls = extract_page_xmls(self.fileobj) | ||
pool = multiprocessing.Pool(self.processes) | ||
# process the corpus in smaller chunks of docs, because multiprocessing.Pool | ||
# is dumb and would load the entire input into RAM at once... | ||
for group in utils.chunkize(page_xmls, chunksize=10 * self.processes, maxsize=1): | ||
for article_title, sections in pool.imap(segment, group): # chunksize=10): | ||
# article redirects and short stubs are pruned here | ||
num_total_tokens = 0 | ||
for section_title, section_content in sections: | ||
if self.lemmatize: | ||
num_total_tokens += len(utils.lemmatize(section_content)) | ||
else: | ||
num_total_tokens += len(tokenize(section_content)) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Btw I think for the purposes of It's easy to go from raw There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is only for filtering very short articles, all content provided "as is". There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Ah, OK, thanks. |
||
if num_total_tokens < ARTICLE_MIN_WORDS or \ | ||
any(article_title.startswith(ignore + ':') for ignore in IGNORED_NAMESPACES): | ||
continue | ||
articles += 1 | ||
yield (article_title, sections) | ||
pool.terminate() | ||
self.length = articles # cache corpus length | ||
|
||
|
||
if __name__ == "__main__": | ||
logging.basicConfig(format='%(asctime)s : %(processName)s : %(levelname)s : %(message)s', level=logging.INFO) | ||
logger.info("running %s", " ".join(sys.argv)) | ||
|
||
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter, description=globals()['__doc__']) | ||
parser.add_argument('-f', '--file', help='Path to MediaWiki database dump', required=True) | ||
parser.add_argument('-o', '--output', help='Path to output file', required=True) | ||
args = parser.parse_args() | ||
segment_and_print_all_articles(args.file, args.output) | ||
|
||
logger.info("finished running %s", sys.argv[0]) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Don't mix
__init__
andclass
annotations. I propose to annotate__init__
from now on.http://www.sphinx-doc.org/en/stable/ext/example_numpy.html