Skip to content

Code to reproduce 'Last Layer Marginal Likelihood for Invariance Learning' paper, AISTATS '22.

Notifications You must be signed in to change notification settings

polaschwoebel/InvDKGP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Invariance Learning for Deep Kernel GPs

This repository contains source code for the paper
Last Layer Marginal Likelihood for Invariance Learning by Pola Schwöbel, Martin Jørgensen, Sebastian W. Ober and Mark van der Wilk.

Example

To learn invariances with a deep kernel GP on rotated MNIST (i.e. Sec. 6.1 in the paper) run the following.

  1. Pretrain CNN: python runner_script.py -use_model CNN -path 'experiment_results/demorun/' -dataset 'rotMNIST' -nr_epochs 200 -GPU 0 -CNN_architecture small -optimizer adam -learning_rate 0.001 -batch_size 200

  2. Train invariant deep kernel GP on top: python runner_script.py -use_model SVGP -deepkernel -path 'experiment_results/demorun/' -dataset 'rotMNIST' -batch_size 200 -nr_inducing_points 750 -ind_point_init 'inducing-init' -nr_epochs 10000 -GPU 2 -pretrained_CNN_path 'experiment_results/demorun/model_CNN_rotMNIST_small_STN_preprocessing_lr_0.001_batch_size_200_adam' -invariant -use_orbit seven_param_affine -orbit_size 90 -likelihood_variance 0.05 -experiment_config 'coord_ascent_training' -toggle_after_steps 15000 -basekern_lengthscale 50 -full_batch_frequency 5000 -CNN_architecture small -fix_likelihood -fix_kernel_variance

For more runs from the paper see bash scripts in deepkernelinv_experiments.experiment_scripts.bash_scripts/.

About

Code to reproduce 'Last Layer Marginal Likelihood for Invariance Learning' paper, AISTATS '22.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published