-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add support for domain-specific models:
1. ChartAssistant (`chartast.py`) 2. ChartInstruct (`chartinstruct.py`) 3. ChartLlama (`chartllama.py`) 4. CogAgent (`cogagent.py`) 5. DocOwl1.5 (`docowl15.py`) 6. TextMonkey (`textmonkey.py`) 7. TinyChart (`tinychart.py`) 8. UniChart (`unichart.py`) 9. UReader (`ureader.py`)
- Loading branch information
Colin Wang
committed
Aug 18, 2024
1 parent
4e52142
commit 091caa8
Showing
9 changed files
with
597 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
# Adapted from https://github.com/OpenGVLab/ChartAst/blob/main/accessory/single_turn_eval.py | ||
# This has support for the ChartAssistant model | ||
|
||
import os | ||
vlm_codebase = os.environ['VLM_CODEBASE_DIR'] | ||
|
||
import sys | ||
sys.path.append(vlm_codebase + '/ChartAst/accessory') | ||
|
||
os.environ['MP'] = '1' | ||
os.environ['WORLD_SIZE'] = '1' | ||
|
||
import torch | ||
from tqdm import tqdm | ||
import torch.distributed as dist | ||
|
||
|
||
sys.path.append(os.path.abspath(__file__).rsplit('/', 2)[0]) | ||
from fairscale.nn.model_parallel import initialize as fs_init | ||
from model.meta import MetaModel | ||
from util.tensor_parallel import load_tensor_parallel_model_list | ||
from util.misc import init_distributed_mode | ||
from PIL import Image | ||
|
||
import torchvision.transforms as transforms | ||
|
||
try: | ||
from torchvision.transforms import InterpolationMode | ||
|
||
BICUBIC = InterpolationMode.BICUBIC | ||
except ImportError: | ||
BICUBIC = Image.BICUBIC | ||
|
||
from PIL import Image | ||
import os | ||
import torch | ||
|
||
|
||
class PadToSquare: | ||
def __init__(self, background_color): | ||
""" | ||
pad an image to squre (borrowed from LLAVA, thx) | ||
:param background_color: rgb values for padded pixels, normalized to [0, 1] | ||
""" | ||
self.bg_color = tuple(int(x * 255) for x in background_color) | ||
|
||
def __call__(self, img: Image.Image): | ||
width, height = img.size | ||
if width == height: | ||
return img | ||
elif width > height: | ||
result = Image.new(img.mode, (width, width), self.bg_color) | ||
result.paste(img, (0, (width - height) // 2)) | ||
return result | ||
else: | ||
result = Image.new(img.mode, (height, height), self.bg_color) | ||
result.paste(img, ((height - width) // 2, 0)) | ||
return result | ||
|
||
def T_padded_resize(size=448): | ||
t = transforms.Compose([ | ||
PadToSquare(background_color=(0.48145466, 0.4578275, 0.40821073)), | ||
transforms.Resize( | ||
size, interpolation=transforms.InterpolationMode.BICUBIC | ||
), | ||
transforms.ToTensor(), | ||
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])]) | ||
return t | ||
|
||
def generate_response(queries, model_path): | ||
init_distributed_mode() | ||
fs_init.initialize_model_parallel(dist.get_world_size()) | ||
model = MetaModel('llama_ens5', model_path + '/params.json', model_path + '/tokenizer.model', with_visual=True) | ||
print(f"load pretrained from {model_path}") | ||
load_tensor_parallel_model_list(model, model_path) | ||
model.bfloat16().cuda() | ||
max_gen_len = 512 | ||
gen_t = 0.9 | ||
top_p = 0.5 | ||
|
||
for k in tqdm(queries): | ||
question = queries[k]['question'] | ||
img_path = queries[k]['figure_path'] | ||
|
||
prompt = f"""Below is an instruction that describes a task. " | ||
"Write a response that appropriately completes the request.\n\n" | ||
"### Instruction:\nPlease answer my question based on the chart: {question}\n\n### Response:""" | ||
|
||
image = Image.open(img_path).convert('RGB') | ||
transform_val = T_padded_resize(448) | ||
image = transform_val(image).unsqueeze(0) | ||
image = image.cuda() | ||
|
||
with torch.cuda.amp.autocast(dtype=torch.bfloat16): | ||
response = model.generate([prompt], image, max_gen_len=max_gen_len, temperature=gen_t, top_p=top_p) | ||
response = response[0].split('###')[0] | ||
print(response) | ||
queries[k]['response'] = response |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
# Adapted from https://huggingface.co/ahmed-masry/ChartInstruct-LLama2, https://huggingface.co/ahmed-masry/ChartInstruct-FlanT5-XL | ||
# This has support for two ChartInstruct models, LLama2 and FlanT5 | ||
|
||
from PIL import Image | ||
from transformers import AutoProcessor, LlavaForConditionalGeneration, AutoModelForSeq2SeqLM | ||
import torch | ||
from tqdm import tqdm | ||
|
||
def generate_response(queries, model_path): | ||
if "LLama2" in model_path: | ||
print("Using LLama2 model") | ||
model = LlavaForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16) | ||
elif "FlanT5" in model_path: | ||
print("Using FlanT5 model") | ||
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True) | ||
else: | ||
raise ValueError(f"Model {model_path} not supported") | ||
processor = AutoProcessor.from_pretrained(model_path) | ||
|
||
|
||
device = "cuda" if torch.cuda.is_available() else "cpu" | ||
model.to(device) | ||
|
||
for k in tqdm(queries): | ||
image_path = queries[k]['figure_path'] | ||
input_prompt = queries[k]['question'] | ||
input_prompt = f"<image>\n Question: {input_prompt} Answer: " | ||
|
||
image = Image.open(image_path).convert('RGB') | ||
inputs = processor(text=input_prompt, images=image, return_tensors="pt") | ||
inputs = {k: v.to(device) for k, v in inputs.items()} | ||
|
||
# change type if pixel_values in inputs to fp16. | ||
inputs['pixel_values'] = inputs['pixel_values'].to(torch.float16) | ||
if "LLama2" in model_path: | ||
prompt_length = inputs['input_ids'].shape[1] | ||
|
||
# move to device | ||
inputs = {k: v.to(device) for k, v in inputs.items()} | ||
|
||
# Generate | ||
generate_ids = model.generate(**inputs, num_beams=4, max_new_tokens=512) | ||
output_text = processor.batch_decode(generate_ids[:, prompt_length:] \ | ||
if 'LLama2' in model_path else generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | ||
print(output_text) | ||
queries[k]['response'] = output_text |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
# Adapted from https://github.com/tingxueronghua/ChartLlama-code/blob/main/model_vqa_lora.py | ||
# This has support for the Chartllama model | ||
|
||
### HEADER START ### | ||
import os | ||
vlm_codebase = os.environ['VLM_CODEBASE_DIR'] | ||
|
||
import sys | ||
sys.path.append(vlm_codebase + '/ChartLlama-code') | ||
### HEADER END ### | ||
|
||
import argparse | ||
import torch | ||
import os | ||
import json | ||
from tqdm import tqdm | ||
import shortuuid | ||
import warnings | ||
import shutil | ||
|
||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig | ||
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | ||
from llava.conversation import conv_templates, SeparatorStyle | ||
from llava.model import * | ||
from llava.utils import disable_torch_init | ||
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path | ||
from torch.utils.data import Dataset, DataLoader | ||
|
||
from PIL import Image | ||
import math | ||
|
||
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda"): | ||
kwargs = {"device_map": device_map} | ||
|
||
if load_8bit: | ||
kwargs['load_in_8bit'] = True | ||
elif load_4bit: | ||
kwargs['load_in_4bit'] = True | ||
kwargs['quantization_config'] = BitsAndBytesConfig( | ||
load_in_4bit=True, | ||
bnb_4bit_compute_dtype=torch.float16, | ||
bnb_4bit_use_double_quant=True, | ||
bnb_4bit_quant_type='nf4' | ||
) | ||
else: | ||
kwargs['torch_dtype'] = torch.float16 | ||
|
||
# Load LLaVA model | ||
if model_base is None: | ||
raise ValueError('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.') | ||
if model_base is not None: | ||
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) | ||
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | ||
print('Loading LLaVA from base model...') | ||
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) | ||
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features | ||
if model.lm_head.weight.shape[0] != token_num: | ||
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) | ||
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) | ||
|
||
print('Loading additional LLaVA weights...') | ||
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): | ||
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') | ||
else: | ||
# this is probably from HF Hub | ||
from huggingface_hub import hf_hub_download | ||
def load_from_hf(repo_id, filename, subfolder=None): | ||
cache_file = hf_hub_download( | ||
repo_id=repo_id, | ||
filename=filename, | ||
subfolder=subfolder) | ||
return torch.load(cache_file, map_location='cpu') | ||
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') | ||
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} | ||
if any(k.startswith('model.model.') for k in non_lora_trainables): | ||
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} | ||
model.load_state_dict(non_lora_trainables, strict=False) | ||
|
||
from peft import PeftModel | ||
print('Loading LoRA weights...') | ||
model = PeftModel.from_pretrained(model, model_path) | ||
print('Merging LoRA weights...') | ||
model = model.merge_and_unload() | ||
print('Model is loaded...') | ||
|
||
image_processor = None | ||
|
||
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | ||
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) | ||
if mm_use_im_patch_token: | ||
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | ||
if mm_use_im_start_end: | ||
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | ||
model.resize_token_embeddings(len(tokenizer)) | ||
|
||
vision_tower = model.get_vision_tower() | ||
if not vision_tower.is_loaded: | ||
vision_tower.load_model() | ||
vision_tower.to(device=device, dtype=torch.float16) | ||
image_processor = vision_tower.image_processor | ||
|
||
if hasattr(model.config, "max_sequence_length"): | ||
context_len = model.config.max_sequence_length | ||
else: | ||
context_len = 2048 | ||
|
||
return tokenizer, model, image_processor, context_len | ||
|
||
|
||
def generate_response(queries, model_path): | ||
disable_torch_init() | ||
base_model_path, model_path= model_path.split('::') | ||
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, base_model_path, None) | ||
conv_mode = "vicuna_v1" | ||
|
||
def process(image, question, tokenizer, image_processor, model_config): | ||
qs = question.replace(DEFAULT_IMAGE_TOKEN, '').strip() | ||
if model.config.mm_use_im_start_end: | ||
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs | ||
else: | ||
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs | ||
|
||
conv = conv_templates[conv_mode].copy() | ||
conv.append_message(conv.roles[0], qs) | ||
conv.append_message(conv.roles[1], None) | ||
prompt = conv.get_prompt() | ||
|
||
image_tensor = process_images([image], image_processor, model_config)[0] | ||
|
||
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt') | ||
|
||
return input_ids, image_tensor | ||
|
||
for k in tqdm(queries): | ||
image_path = queries[k]['figure_path'] | ||
image = Image.open(image_path).convert('RGB') | ||
question = queries[k]['question'] | ||
|
||
input_ids, image_tensor = process(image, question, tokenizer, image_processor, model.config) | ||
stop_str = conv_templates[conv_mode].sep if conv_templates[conv_mode].sep_style != SeparatorStyle.TWO else conv_templates[conv_mode].sep2 | ||
input_ids = input_ids.to(device='cuda', non_blocking=True).unsqueeze(0) # added the unsqueeze(0) to make it batch size 1 | ||
image_tensor = image_tensor.unsqueeze(0) # added the unsqueeze(0) to make it batch size 1 | ||
with torch.inference_mode(): | ||
output_ids = model.generate( | ||
input_ids, | ||
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True), | ||
do_sample=False, | ||
max_new_tokens=1636, | ||
use_cache=True | ||
) | ||
input_token_len = input_ids.shape[1] | ||
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() | ||
if n_diff_input_output > 0: | ||
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') | ||
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] | ||
outputs = outputs.strip() | ||
if outputs.endswith(stop_str): | ||
outputs = outputs[:-len(stop_str)] | ||
outputs = outputs.strip() | ||
queries[k]['response'] = outputs |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
# Adapted from https://huggingface.co/THUDM/cogagent-vqa-hf | ||
# This has support for the CogAgent model | ||
|
||
import torch | ||
from PIL import Image | ||
from transformers import AutoModelForCausalLM, LlamaTokenizer | ||
from tqdm import tqdm | ||
|
||
def generate_response(queries, model_path): | ||
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | ||
torch_type = torch.bfloat16 | ||
tokenizer_path, model_path = model_path.split('::') | ||
tokenizer = LlamaTokenizer.from_pretrained(tokenizer_path) | ||
model = AutoModelForCausalLM.from_pretrained( | ||
model_path, | ||
torch_dtype=torch.bfloat16, | ||
low_cpu_mem_usage=True, | ||
load_in_4bit=False, | ||
trust_remote_code=True | ||
).to('cuda').eval() | ||
|
||
for k in tqdm(queries): | ||
image_path = queries[k]['figure_path'] | ||
image = Image.open(image_path).convert('RGB') | ||
query = f"Human:{queries[k]['question']}" | ||
history = [] | ||
|
||
input_by_model = model.build_conversation_input_ids(tokenizer, query=query, history=history, images=[image]) | ||
inputs = { | ||
'input_ids': input_by_model['input_ids'].unsqueeze(0).to(DEVICE), | ||
'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(DEVICE), | ||
'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(DEVICE), | ||
'images': [[input_by_model['images'][0].to(DEVICE).to(torch_type)]], | ||
} | ||
if 'cross_images' in input_by_model and input_by_model['cross_images']: | ||
inputs['cross_images'] = [[input_by_model['cross_images'][0].to(DEVICE).to(torch_type)]] | ||
|
||
# add any transformers params here. | ||
gen_kwargs = {"max_length": 2048, | ||
"temperature": 0.9, | ||
"do_sample": False} | ||
with torch.no_grad(): | ||
outputs = model.generate(**inputs, **gen_kwargs) | ||
outputs = outputs[:, inputs['input_ids'].shape[1]:] | ||
response = tokenizer.decode(outputs[0]) | ||
response = response.split("</s>")[0] | ||
print("\nCog:", response) | ||
print('model_answer:', response) | ||
queries[k]['response'] = response |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
# Adapted from https://github.com/X-PLUG/mPLUG-DocOwl/blob/main/DocOwl1.5/docowl_infer.py | ||
# This has support for the DocOwl model | ||
|
||
### HEADER START ### | ||
import os | ||
vlm_codebase = os.environ['VLM_CODEBASE_DIR'] | ||
|
||
import sys | ||
sys.path.append(vlm_codebase + '/mPLUG-DocOwl/DocOwl1.5') | ||
### HEADER END ### | ||
|
||
from docowl_infer import DocOwlInfer | ||
from tqdm import tqdm | ||
import os | ||
|
||
def generate_response(queries, model_path): | ||
docowl = DocOwlInfer(ckpt_path=model_path, anchors='grid_9', add_global_img=True) | ||
print('load model from ', model_path) | ||
# infer the test samples one by one | ||
for k in tqdm(queries): | ||
image = queries[k]['figure_path'] | ||
question = queries[k]['question'] | ||
model_answer = docowl.inference(image, question) | ||
print('model_answer:', model_answer) | ||
queries[k]['response'] = model_answer |
Oops, something went wrong.