Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Graph operations compatible with np array #206

Merged
merged 1 commit into from
Dec 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 18 additions & 3 deletions causallearn/graph/Dag.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
#!/usr/bin/env python3
from itertools import combinations
from typing import List
from typing import List, Optional, Union

import networkx as nx
import numpy as np
Expand All @@ -18,8 +18,23 @@
# or latent, with at most one edge per node pair, and no edges to self.
class Dag(GeneralGraph):

def __init__(self, nodes: List[Node]):

def __init__(self, nodes: Optional[List[Node]]=None, graph: Union[np.ndarray, nx.Graph, None]=None):
if nodes is not None:
self._init_from_nodes(nodes)
elif graph is not None:
if isinstance(graph, np.ndarray):
nodes = [Node(node_name=str(i)) for i in range(len(graph))]
self._init_from_nodes(nodes)
for i in range(len(nodes)):
for j in range(len(nodes)):
if graph[i, j] == 1:
self.add_directed_edge(nodes[i], nodes[j])
else:
pass
else:
raise ValueError("Dag.__init__() requires argument 'nodes' or 'graph'")

def _init_from_nodes(self, nodes: List[Node]):
# for node in nodes:
# if not isinstance(node, type(GraphNode)):
# raise TypeError("Graphs must be instantiated with a list of GraphNodes")
Expand Down
19 changes: 13 additions & 6 deletions causallearn/graph/Node.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,27 +2,34 @@

# Represents an object with a name, node type, and position that can serve as a
# node in a graph.
from typing import Optional
from causallearn.graph.NodeType import NodeType
from causallearn.graph.NodeVariableType import NodeVariableType


class Node:
node_type: NodeType
node_name: str

def __init__(self, node_name: Optional[str] = None, node_type: Optional[NodeType] = None) -> None:
self.node_name = node_name
self.node_type = node_type

# @return the name of the variable.
def get_name(self) -> str:
pass
return self.node_name

# set the name of the variable
def set_name(self, name: str):
pass
self.node_name = name

# @return the node type of the variable
def get_node_type(self) -> NodeType:
pass
return self.node_type

# set the node type of the variable
def set_node_type(self, node_type: NodeType):
pass
self.node_type = node_type

# @return the intervention type
def get_node_variable_type(self) -> NodeVariableType:
Expand All @@ -35,7 +42,7 @@ def set_node_variable_type(self, var_type: NodeVariableType):

# @return the name of the node as its string representation
def __str__(self):
pass
return self.node_name

# @return the x coordinate of the center of the node
def get_center_x(self) -> int:
Expand All @@ -59,7 +66,7 @@ def set_center(self, center_x: int, center_y: int):

# @return a hashcode for this variable
def __hash__(self):
pass
return hash(self.node_name)

# @return true iff this variable is equal to the given variable
def __eq__(self, other):
Expand Down
11 changes: 9 additions & 2 deletions causallearn/utils/DAG2CPDAG.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from typing import Union
import numpy as np

from causallearn.graph.Dag import Dag
Expand All @@ -6,7 +7,7 @@
from causallearn.graph.GeneralGraph import GeneralGraph


def dag2cpdag(G: Dag) -> GeneralGraph:
def dag2cpdag(G: Union[Dag, np.ndarray]) -> GeneralGraph:
"""
Convert a DAG to its corresponding PDAG
Expand All @@ -22,7 +23,13 @@ def dag2cpdag(G: Dag) -> GeneralGraph:
-------
Yuequn Liu@dmirlab, Wei Chen@dmirlab, Kun Zhang@CMU
"""


if isinstance(G, np.ndarray):
# convert np array to Dag graph
G = Dag(graph=G)
elif not isinstance(G, Dag):
raise TypeError("parameter graph should be `Dag` or `np.ndarry`")

# order the edges in G
nodes_order = list(
map(lambda x: G.node_map[x], G.get_causal_ordering())
Expand Down