-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #211 from knaaptime/classify
WIP classify to rgba
- Loading branch information
Showing
3 changed files
with
91 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
import geopandas | ||
import numpy as np | ||
from mapclassify.util import get_rgba | ||
|
||
world = geopandas.read_file( | ||
"https://naciscdn.org/naturalearth/110m/cultural/ne_110m_admin_0_countries.zip" | ||
) | ||
|
||
|
||
def test_rgba(): | ||
colors = get_rgba(world.area, cmap="viridis")[0] | ||
assert colors == [ | ||
np.float64(68.08602), | ||
np.float64(1.24287), | ||
np.float64(84.000825), | ||
np.float64(255.0), | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
from ._classify_API import classify as _classify | ||
|
||
|
||
def get_rgba( | ||
values, | ||
classifier="quantiles", | ||
cmap="viridis", | ||
alpha=1, | ||
nan_color=[255, 255, 255, 255], | ||
**kwargs, | ||
): | ||
"""Convert array of values into RGBA colors using a colormap and classifier. | ||
Parameters | ||
---------- | ||
values : list-like | ||
array of input values | ||
classifier : str, optional | ||
string description of a mapclassify classifier, by default "quantiles" | ||
cmap : str, optional | ||
name of matplotlib colormap to use, by default "viridis" | ||
alpha : float | ||
alpha parameter that defines transparency. Should be in the range [0,1] | ||
nan_color : list, optional | ||
RGBA color to fill NaN values, by default [255, 255, 255, 255] | ||
kwargs : dict | ||
additional keyword arguments are passed to `mapclassify.classify` | ||
Returns | ||
------- | ||
numpy.array | ||
array of lists with each list containing four values that define a color using | ||
RGBA specification. | ||
""" | ||
try: | ||
import pandas as pd | ||
from matplotlib import cm | ||
from matplotlib.colors import Normalize | ||
except ImportError as e: | ||
raise ImportError("This function requires pandas and matplotlib") from e | ||
if not (alpha <= 1) and (alpha >= 0): | ||
raise ValueError("alpha must be in the range [0,1]") | ||
if not pd.api.types.is_list_like(nan_color) and not len(nan_color) == 4: | ||
raise ValueError("`nan_color` must be list-like of 4 values: (R,G,B,A)") | ||
|
||
# only operate on non-NaN values | ||
v = pd.Series(values, dtype=object) | ||
legit_indices = v[~v.isna()].index.values | ||
|
||
# transform (non-NaN) values into class bins | ||
bins = _classify(v.dropna().values, scheme=classifier, **kwargs).yb | ||
|
||
# create a normalizer using the data's range (not strictly 1-k...) | ||
norm = Normalize(min(bins), max(bins)) | ||
|
||
# map values to colors | ||
n_cmap = cm.ScalarMappable(norm=norm, cmap=cmap) | ||
|
||
# create array of RGB values (lists of 4) of length n | ||
vals = [n_cmap.to_rgba(i, alpha=alpha) for i in bins] | ||
|
||
# convert decimals to whole numbers | ||
rgbas = [] | ||
for val in vals: | ||
# convert each value in the array of lists | ||
rgbas.append([i * 255 for i in val]) | ||
|
||
# replace non-nan values with colors | ||
colors = pd.Series(rgbas, index=legit_indices) | ||
v.update(colors) | ||
v = v.fillna(f"{nan_color}").apply(list) | ||
|
||
return v.values |