Skip to content

Commit

Permalink
Move CI to Github Actions (#620)
Browse files Browse the repository at this point in the history
Summary:

Moves the continuous integration (CI) processy from CircleCI to Github Actions. The changes include creating a new ci.yml file to define the CI workflow that largely mimics the existing circleCi config.

Differential Revision: D53107145
  • Loading branch information
Karthik Prasad authored and facebook-github-bot committed Jan 29, 2024
1 parent f4dc430 commit 0c78c7e
Show file tree
Hide file tree
Showing 2 changed files with 505 additions and 0 deletions.
386 changes: 386 additions & 0 deletions .github/workflows/ci.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,386 @@
name: CI

on:
push:
branches:
- main
pull_request:
branches:
- main
schedule:
- cron: '4 4 * * *' # This schedule runs the nightly job every night at 4:04AM


jobs:
lint_py39_torch_release:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install flake8 black isort
./scripts/install_via_pip.sh
- name: Lint with flake8
run: flake8 --config ./.github/workflows/flake8_config.ini
- name: Lint with black
run: black --check --diff --color .
- name: Check import order with isort
run: isort -v -l 88 -o opacus --lines-after-imports 2 -m 3 --trailing-comma --check-only .

lint_torch_release:
strategy:
matrix:
python_version: ["3.9"]
fail-fast: false
uses: pytorch/test-infra/.github/workflows/linux_job.yml@main
with:
runner: linux.2xlarge
repository: pytorch/opacus
timeout: 60
script: |
echo '::group::Create conda env with correct Python version'
set -x
PYTHON_VERSION="${{ matrix.python_version }}"
conda create --yes --quiet -n test python="${PYTHON_VERSION}"
conda activate test
python --version | grep "${PYTHON_VERSION}"
echo '::endgroup::'
echo '::group::Install dependencies via pip, including extra deps.'
sudo apt-get install apt
./scripts/install_via_pip.sh
echo '::endgroup::'
echo '::group::Lint with flake8'
flake8 --config ./.github/workflows/flake8_config.ini
echo '::endgroup::'
echo '::group::Lint with black'
black --check --diff --color .
echo '::endgroup::'
echo '::group::Check import order with isort'
isort -v -l 88 -o opacus --lines-after-imports 2 -m 3 --trailing-comma --check-only .
echo '::endgroup::'
unittest_py38_torch_release:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.8
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pytest coverage coveralls
./scripts/install_via_pip.sh
- name: Run unit tests
run: |
mkdir unittest-py38-release-reports
coverage run -m pytest --doctest-modules -p conftest --junitxml=unittest-py38-release-reports/junit.xml opacus
coverage report -i -m
- name: Store test results
uses: actions/upload-artifact@v2
with:
name: unittest-py38-release-reports
path: unittest-py38-release-reports

unittest_py39_torch_release:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pytest coverage coveralls
./scripts/install_via_pip.sh
- name: Run unit tests
run: |
mkdir unittest-py39-release-reports
coverage run -m pytest --doctest-modules -p conftest --junitxml=unittest-py39-release-reports/junit.xml opacus
coverage report -i -m
- name: Store test results
uses: actions/upload-artifact@v2
with:
name: unittest-py39-release-reports
path: unittest-py39-release-reports

unittest_py39_torch_nightly:
runs-on: ubuntu-latest
if: ${{ github.event_name == 'schedule' }}
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pytest coverage coveralls
./scripts/install_via_pip.sh -n
- name: Run unit tests
run: |
mkdir unittest-py39-nightly-reports
coverage run -m pytest --doctest-modules -p conftest --junitxml=unittest-py39-nightly-reports/junit.xml opacus
coverage report -i -m
- name: Store test results
uses: actions/upload-artifact@v2
with:
name: unittest-py39-nightly-reports
path: unittest-py39-nightly-reports

prv_accountant_values:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install dependencies
run: |
python -m pip install --upgrade pip
./scripts/install_via_pip.sh
- name: Run prv accountant unit tests
run: |
python -m unittest opacus.tests.prv_accountant
integrationtest_py39_torch_release_cpu:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pytest coverage coveralls
./scripts/install_via_pip.sh
- name: Run MNIST integration test (CPU)
run: |
mkdir -p runs/mnist/data
mkdir -p runs/mnist/test-reports
coverage run examples/mnist.py --lr 0.25 --sigma 0.7 -c 1.5 --batch-size 64 --epochs 1 --data-root runs/mnist/data --n-runs 1 --device cpu
python -c "import torch; accuracy = torch.load('run_results_mnist_0.25_0.7_1.5_64_1.pt'); exit(0) if (accuracy[0]>0.78 and accuracy[0]<0.95) else exit(1)"
coverage report -i -m
- name: Store test results
uses: actions/upload-artifact@v2
with:
name: mnist-cpu-reports
path: runs/mnist/test-reports

integrationtest_py39_torch_release_cuda:
runs-on: ubuntu-latest
needs: [unittest_py39_torch_release]
container:
# https://hub.docker.com/r/nvidia/cuda
image: nvidia/cuda:12.3.1-base-ubuntu22.04
options: --gpus all
env:
TZ: 'UTC'
steps:
- name: Checkout
uses: actions/checkout@v2

- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.9

- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pytest coverage coveralls
./scripts/install_via_pip.sh
- name: Install CUDA toolkit and cuDNN
run: |
apt-get update
apt-get install -y --no-install-recommends \
cuda-toolkit-11-1 \
libcudnn8=8.1.1.33-1+cuda11.1 \
libcudnn8-dev=8.1.1.33-1+cuda11.1
- name: Run MNIST integration test (CUDA)
run: |
mkdir -p runs/mnist/data
mkdir -p runs/mnist/test-reports
python examples/mnist.py --lr 0.25 --sigma 0.7 -c 1.5 --batch-size 64 --epochs 1 --data-root runs/mnist/data --n-runs 1 --device cuda
python -c "import torch; accuracy = torch.load('run_results_mnist_0.25_0.7_1.5_64_1.pt'); exit(0) if (accuracy[0]>0.78 and accuracy[0]<0.95) else exit(1)"
- name: Store MNIST test results
uses: actions/upload-artifact@v2
with:
name: mnist-gpu-reports
path: runs/mnist/test-reports

- name: Run CIFAR10 integration test (CUDA)
run: |
mkdir -p runs/cifar10/data
mkdir -p runs/cifar10/logs
mkdir -p runs/cifar10/test-reports
pip install tensorboard
python examples/cifar10.py --lr 0.1 --sigma 1.5 -c 10 --batch-size 2000 --epochs 10 --data-root runs/cifar10/data --log-dir runs/cifar10/logs --device cuda
python -c "import torch; model = torch.load('model_best.pth.tar'); exit(0) if (model['best_acc1']>0.4 and model['best_acc1']<0.49) else exit(1)"
python examples/cifar10.py --lr 0.1 --sigma 1.5 -c 10 --batch-size 2000 --epochs 10 --data-root runs/cifar10/data --log-dir runs/cifar10/logs --device cuda --grad_sample_mode no_op
python -c "import torch; model = torch.load('model_best.pth.tar'); exit(0) if (model['best_acc1']>0.4 and model['best_acc1']<0.49) else exit(1)"
- name: Store CIFAR10 test results
uses: actions/upload-artifact@v2
with:
name: cifar10-gpu-reports
path: runs/cifar10/test-reports

- name: Run IMDb integration test (CUDA)
run: |
mkdir -p runs/imdb/data
mkdir -p runs/imdb/test-reports
pip install --user datasets transformers
python examples/imdb.py --lr 0.02 --sigma 1.0 -c 1.0 --batch-size 64 --max-sequence-length 256 --epochs 2 --data-root runs/imdb/data --device cuda
python -c "import torch; accuracy = torch.load('run_results_imdb_classification.pt'); exit(0) if (accuracy>0.54 and accuracy<0.66) else exit(1)"
- name: Store IMDb test results
uses: actions/upload-artifact@v2
with:
name: imdb-gpu-reports
path: runs/imdb/test-reports

- name: Run charlstm integration test (CUDA)
run: |
mkdir -p runs/charlstm/data
wget https://download.pytorch.org/tutorial/data.zip -O runs/charlstm/data/data.zip
unzip runs/charlstm/data/data.zip -d runs/charlstm/data
rm runs/charlstm/data/data.zip
mkdir -p runs/charlstm/test-reports
pip install scikit-learn
python examples/char-lstm-classification.py --epochs=20 --learning-rate=2.0 --hidden-size=128 --delta=8e-5 --batch-size 400 --n-layers=1 --sigma=1.0 --max-per-sample-grad-norm=1.5 --data-root="runs/charlstm/data/data/names/" --device cuda --test-every 5
python -c "import torch; accuracy = torch.load('run_results_chr_lstm_classification.pt'); exit(0) if (accuracy>0.60 and accuracy<0.80) else exit(1)"
- name: Store test results
uses: actions/upload-artifact@v2
with:
name: charlstm-gpu-reports
path: runs/charlstm/test-reports

micro_benchmarks_py39_torch_release_cuda:
runs-on: ubuntu-latest
needs: [integrationtest_py39_torch_release_cuda]
container:
# https://hub.docker.com/r/nvidia/cuda
image: nvidia/cuda:12.3.1-base-ubuntu22.04
options: --gpus all
env:
TZ: 'UTC'
steps:
- name: Checkout
uses: actions/checkout@v2

- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.9

- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pytest coverage coveralls
./scripts/install_via_pip.sh
- name: Install CUDA toolkit and cuDNN
run: |
apt-get update
apt-get install -y --no-install-recommends \
cuda-toolkit-11-1 \
libcudnn8=8.1.1.33-1+cuda11.1 \
libcudnn8-dev=8.1.1.33-1+cuda11.1
- name: Run benchmark integration tests (CUDA)
run: |
mkdir -p benchmarks/results/raw
python benchmarks/run_benchmarks.py --batch_size 16 --layers "groupnorm instancenorm layernorm" --config_file ./benchmarks/config.json --root ./benchmarks/results/raw/ --cont
IFS=$' ';layers=("groupnorm" "instancenorm" "layernorm"); rm -rf /tmp/report_layers; mkdir -p /tmp/report_layers; IFS=$'\n'; files=`( echo "${layers[*]}" ) | sed 's/.*/.\/benchmarks\/results\/raw\/&*/'`
cp -v ${files[@]} /tmp/report_layers
report_id=`IFS=$'-'; echo "${layers[*]}"`
python benchmarks/generate_report.py --path-to-results /tmp/report_layers --save-path benchmarks/results/report-${report_id}.csv --format csv
python benchmarks/generate_report.py --path-to-results /tmp/report_layers --save-path benchmarks/results/report-${report_id}.pkl --format pkl
python benchmarks/check_threshold.py --report-path "./benchmarks/results/report-"$report_id".pkl" --metric runtime --threshold 3.0 --column "hooks/baseline"
python benchmarks/check_threshold.py --report-path "./benchmarks/results/report-"$report_id".pkl" --metric memory --threshold 1.6 --column "hooks/baseline"
- name: Store artifacts
uses: actions/upload-artifact@v2
with:
name: benchmarks-reports
path: benchmarks/results/

unittest_multi_gpu:
runs-on: ubuntu-latest
container:
# https://hub.docker.com/r/nvidia/cuda
image: nvidia/cuda:12.3.1-base-ubuntu22.04
options: --gpus all
env:
TZ: 'UTC'
steps:
- name: Checkout
uses: actions/checkout@v2

- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.9

- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pytest coverage coveralls
./scripts/install_via_pip.sh
- name: Run multi-GPU unit tests
run: |
nvidia-smi
mkdir unittest-multigpu-reports
coverage run -m unittest opacus.tests.multigpu_gradcheck.GradientComputationTest.test_gradient_correct
coverage report -i -m
- name: Store test results
uses: actions/upload-artifact@v2
with:
name: unittest-multigpu-reports
path: unittest-multigpu-reports

finish_coveralls_parallel:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Finish Coveralls Parallel
run: |
python -m pip install --upgrade pip
pip install coveralls --user
coveralls --finish
- name: coveralls upload
timeout-minutes: 5
run: |
python -m pip install --upgrade pip
pip install coveralls --user
COVERALLS_PARALLEL=true COVERALLS_FLAG_NAME="${GITHUB_JOB}" coveralls
Loading

0 comments on commit 0c78c7e

Please sign in to comment.