Skip to content

📝 An awesome Data Science repository to learn and apply for real world problems.

License

Notifications You must be signed in to change notification settings

pywaker/awesome-datascience

 
 

Repository files navigation

Awesome Data Science Awesome

An open source Data Science repository to learn and apply towards solving real world problems.

Table of contents

Motivation

This part is for dummies who are new to Data Science

This is a shortcut path to start studying Data Science. Just follow the steps to answer the questions, "What is Data Science and what should I study to learn Data Science?"

First of all, Data Science is one of the hottest topics on the Computer and Internet farmland nowadays. People have gathered data from applications and systems until today and now is the time to analyze them. The next steps are producing suggestions from the data and creating predictions about the future. Here you can find the biggest question for Data Science and hundreds of answers from experts. Our favorite data scientist is Clare Corthell. She is an expert in data-related systems and a hacker, and has been working on a company as a data scientist. Clare's blog. This website helps you to understand the exact way to study as a professional data scientist.

Secondly, Our favorite programming language is Python nowadays for #DataScience. Python's - Pandas library has full functionality for collecting and analyzing data. We use Anaconda to play with data and to create applications.

Infographic

Preview Description
A visual guide to Becoming a Data Scientist in 8 Steps by DataCamp (img)
Mindmap on required skills (img)
Swami Chandrasekaran made a Curriculum via Metro map.
by @kzawadz via twitter, MarketingDistillery.com
And a male version, from another article by MarketingDistillery.com
By Data Science Central
From this article by Berkeley Science Review.
Data Science Wars: R vs Python
How to select statistical or machine learning techniques
Choosing the Right Estimator
The Data Science Industry: Who Does What
Data Science Venn Diagram
Different Data Science Skills and Roles from this article by Springboard
Data Fallacies To Avoid A simple and friendly way of teaching your non-data scientist/non-statistician colleagues how to avoid mistakes with data. From Geckoboard's Data Literacy Lessons.

What is Data Science?

COLLEGES

MOOC's

Data Sets

Bloggers

Podcasts

Books

Facebook Accounts

Twitter Accounts

  • Big Data Combine - Rapid-fire, live tryouts for data scientists seeking to monetize their models as trading strategies
  • Big Data Mania - Data Viz Wiz | Data Journalist | Growth Hacker | Author of Data Science for Dummies (2015)
  • Big Data Science - Big Data, Data Science, Predictive Modeling, Business Analytics, Hadoop, Decision and Operations Research.
  • Charlie Greenbacker - Director of Data Science at @ExploreAltamira
  • Chris Said - Data scientist at Twitter
  • Clare Corthell - Dev, Design, Data Science @mattermark #hackerei
  • DADI Charles-Abner - #datascientist @Ekimetrics. , #machinelearning #dataviz #DynamicCharts #Hadoop #R #Python #NLP #Bitcoin #dataenthousiast
  • Data Science Central - Data Science Central is the industry's single resource for Big Data practitioners.
  • Data Science London Data Science. Big Data. Data Hacks. Data Junkies. Data Startups. Open Data
  • Data Science Renee - Documenting my path from SQL Data Analyst pursuing an Engineering Master's Degree to Data Scientist
  • Data Science Report - Mission is to help guide & advance careers in Data Science & Analytics
  • Data Science Tips - Tips and Tricks for Data Scientists around the world! #datascience #bigdata
  • Data Vizzard - DataViz, Security, Military
  • DataScienceX
  • deeplearning4j -
  • DJ Patil - White House Data Chief, VP @ RelateIQ.
  • Domino Data Lab
  • Drew Conway - Data nerd, hacker, student of conflict.
  • Emilio Ferrara - #Networks, #MachineLearning and #DataScience. I work on #Social Media. Postdoc at @IndianaUniv
  • Erin Bartolo - Running with #BigData--enjoying a love/hate relationship with its hype. @iSchoolSU #DataScience Program Mgr.
  • Greg Reda Working @ GrubHub about data and pandas
  • Gregory Piatetsky - KDnuggets President, Analytics/Big Data/Data Mining/Data Science expert, KDD & SIGKDD co-founder, was Chief Scientist at 2 startups, part-time philosopher.
  • Hakan Kardas - Data Scientist
  • Hilary Mason - Data Scientist in Residence at @accel.
  • Jeff Hammerbacher ReTweeting about data science
  • John Myles White Scientist at Facebook and Julia developer. Author of Machine Learning for Hackers and Bandit Algorithms for Website Optimization. Tweets reflect my views only.
  • Juan Miguel Lavista - Principal Data Scientist @ Microsoft Data Science Team
  • Julia Evans - Hacker - Pandas - Data Analyze
  • Kenneth Cukier - The Economist's Data Editor and co-author of Big Data (http://big-data-book.com ).
  • Kevin Davenport - Organizer of https://meetup.com/San-Diego-R-Users-Group/
  • Kevin Markham - Data science instructor, and founder of Data School
  • Kim Rees - Interactive data visualization and tools. Data flaneur.
  • Kirk Borne - DataScientist, PhD Astrophysicist, Top #BigData Influencer.
  • Linda Regber - Data story teller, visualizations.
  • Luis Rei - PhD Student. Programming, Mobile, Web. Artificial Intelligence, Intelligent Robotics Machine Learning, Data Mining, Natural Language Processing, Data Science.
  • Mark Stevenson - Data Analytics Recruitment Specialist at Salt (@SaltJobs) | Analytics - Insight - Big Data - Datascience
  • Matt Harrison - Opinions of full-stack Python guy, author, instructor, currently playing Data Scientist. Occasional fathering, husbanding, ult|goalt-imate, organic gardening.
  • Matthew Russell - Mining the Social Web.
  • Mert Nuhoğlu Data Scientist at BizQualify, Developer
  • Monica Rogati - Data @ Jawbone. Turned data into stories & products at LinkedIn. Text mining, applied machine learning, recommender systems. Ex-gamer, ex-machine coder; namer.
  • Noah Iliinsky - Visualization & interaction designer. Practical cyclist. Author of vis books: http://www.oreilly.com/pub/au/4419
  • Paul Miller - Cloud Computing/ Big Data/ Open Data Analyst & Consultant. Writer, Speaker & Moderator. Gigaom Research Analyst.
  • Peter Skomoroch - Creating intelligent systems to automate tasks & improve decisions. Entrepreneur, ex Principal Data Scientist @LinkedIn. Machine Learning, ProductRei, Networks
  • Prash Chan - Solution Architect @ IBM, Master Data Management, Data Quality & Data Governance Blogger. Data Science, Hadoop, Big Data & Cloud.
  • Quora Data Science Quora's data science topic
  • R-Bloggers - Tweet blog posts from the R blogosphere, data science conferences and (!) open jobs for data scientists.
  • Rand Hindi
  • Randy Olson - Computer scientist researching artificial intelligence. Data tinkerer. Community leader for @DataIsBeautiful. #OpenScience advocate.
  • Recep Erol - Data Science geek @ UALR
  • Ryan Orban - Data scientist, genetic origamist, hardware aficionado
  • Sean J. Taylor - Social Scientist. Hacker. Facebook Data Science Team. Keywords: Experiments, Causal Inference, Statistics, Machine Learning, Economics.
  • Silvia K. Spiva - #DataScience at Cisco
  • Spencer Nelson - Data nerd
  • Talha Oz - Enjoys ABM, SNA, DM, ML, NLP, HI, Python, Java. Top percentile kaggler/data scientist
  • Tasos Skarlatidis - Complex Event Processing, Big Data, Artificial Intelligence and Machine Learning. Passionate about programming and open-source.
  • Terry Timko - InfoGov; Bigdata; Data as a Service; Data Science; Open, Social & Business Data Convergence
  • Tony Baer - IT analyst with Ovum covering Big Data & data management with some systems engineering thrown in.
  • Tony Ojeda - Data Scientist | Author | Entrepreneur. Co-founder @DataCommunityDC. Founder @DistrictDataLab. #DataScience #BigData #DataDC
  • Vamshi Ambati - Data Science @ PayPal. #NLP, #machinelearning; PhD, Carnegie Mellon alumni (Blog: https://allthingsds.wordpress.com )
  • Wes McKinney - Pandas (Python Data Analysis library).
  • WileyEd - Senior Manager - @Seagate Big Data Analytics | @McKinsey Alum | #BigData + #Analytics Evangelist | #Hadoop, #Cloud, #Digital, & #R Enthusiast
  • WNYC Data News Team - The data news crew at @WNYC. Practicing data-driven journalism, making it visual and showing our work. @SkymindIO's open-source deep learning for the JVM. Integrates with Hadoop, Spark. Distributed GPU/CPUs | http://nd4j.org | https://www.skymind.ai/

Youtube Videos & Channels

Toolboxes - Environment

  • neptune.ml -> Community-friendly platform supporting data scientists in creating and sharing machine learning models. Neptune facilitates teamwork, infrastructure management, models comparison and reproducibility.
  • steppy -> Lightweight, Python library for fast and reproducible machine learning experimentation. Introduces very simple interface that enables clean machine learning pipeline design.
  • steppy-toolkit -> Curated collection of the neural networks, transformers and models that make your machine learning work faster and more effective.
  • Datalab from Google easily explore, visualize, analyze, and transform data using familiar languages, such as Python and SQL, interactively.
  • Hortonworks Sandbox is a personal, portable Hadoop environment that comes with a dozen interactive Hadoop tutorials.
  • R is a free software environment for statistical computing and graphics.
  • RStudio IDE – powerful user interface for R. It’s free and open source, works onWindows, Mac, and Linux.
  • Python - Pandas - Anaconda Completely free enterprise-ready Python distribution for large-scale data processing, predictive analytics, and scientific computing
  • Scikit-Learn Machine Learning in Python
  • NumPy NumPy is fundamental for scientific computing with Python. It supports large, multi-dimensional arrays and matrices and includes an assortment of high-level mathematical functions to operate on these arrays.
  • SciPy SciPy works with NumPy arrays and provides efficient routines for numerical integration and optimization.
  • Data Science Toolbox - Coursera Course
  • Data Science Toolbox - Blog
  • Wolfram Data Science Platform Take numerical, textual, image, GIS or other data and give it the Wolfram treatment, carrying out a full spectrum of data science analysis and visualization and automatically generating rich interactive reports—all powered by the revolutionary knowledge-based Wolfram Language.
  • Sense Data Science Development Platform A New Cloud Platform for Data Science and Big Data Analytics Collaborate on, scale, and deploy data analysis and advanced analytics projects radically faster. Use the most powerful tools — R, Python, JavaScript, Redshift, Hive, Impala, Hadoop, and more — supercharged and integrated in the cloud.
  • Datadog Solutions, code, and devops for high-scale data science.
  • Variance Build powerful data visualizations for the web without writing JavaScript
  • Kite Development Kit The Kite Software Development Kit (Apache License, Version 2.0), or Kite for short, is a set of libraries, tools, examples, and documentation focused on making it easier to build systems on top of the Hadoop ecosystem.
  • Domino Data Labs Run, scale, share, and deploy your models — without any infrastructure or setup.
  • Apache Flink A platform for efficient, distributed, general-purpose data processing.
  • Apache Hama Apache Hama is an Apache Top-Level open source project, allowing you to do advanced analytics beyond MapReduce.
  • Weka Weka is a collection of machine learning algorithms for data mining tasks.
  • Octave GNU Octave is a high-level interpreted language, primarily intended for numerical computations.(Free Matlab)
  • Apache Spark Lightning-fast cluster computing
  • Hydrosphere Mist - a service for exposing Apache Spark analytics jobs and machine learning models as realtime, batch or reactive web services.
  • Caffe Deep Learning Framework
  • Torch A SCIENTIFIC COMPUTING FRAMEWORK FOR LUAJIT
  • Nervana's python based Deep Learning Framework
  • Skale - High performance distributed data processing in NodeJS
  • Aerosolve - A machine learning package built for humans.
  • Intel framework - Intel® Deep Learning Framework
  • Datawrapper – An open source data visualization platform helping everyone to create simple, correct and embeddable charts. Also at github.com
  • Tensor Flow - TensorFlow is an Open Source Software Library for Machine Intelligence
  • Natural Language Toolkit
  • nlp-toolkit for node.js
  • Julia – high-level, high-performance dynamic programming language for technical computing
  • IJulia – a Julia-language backend combined with the Jupyter interactive environment
  • Apache Zeppelin - Web-based notebook that enables data-driven, interactive data analytics and collaborative documents with SQL, Scala and more
  • Featuretools - An open source framework for automated feature engineering written in python
  • Optimus - Cleansing, pre-processing, feature engineering, exploratory data analysis and easy ML with PySpark backend.
  • Albumentations - А fast and framework agnostic image augmentation library that implements a diverse set of augmentation techniques. Supports classification, segmentation, detection out of the box. Was used to win a number of Deep Learning competitions at Kaggle, Topcoder and those that were a part of the CVPR workshops.
  • DVC - An open-source data science version control system. It helps track, organize and make data science projects reproducible. In its very basic scenario it helps version control and share large data and model files.
  • Lambdo is a workflow engine which significantly simplifies data analysis by combining in one analysis pipeline (i) feature engineering and machine learning (ii) model training and prediction (iii) table population and column evaluation.
  • Feast - A feature store for the management, discovery, and access of machine learning features. Feast provides a consistent view of feature data for both model training and model serving.
  • Polyaxon - A platform for reproducible and scalable machine learning and deep learning.

Visualization Tools - Environments

Journals, Publications and Magazines

Presentations

Competitions

Some data mining competition platforms

Comics

Digital Data

Tutorials

Other Awesome Lists

About

📝 An awesome Data Science repository to learn and apply for real world problems.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published