forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add photo clustering demo (PaddlePaddle#165)
- Loading branch information
1 parent
5e3c5f8
commit 2204308
Showing
2 changed files
with
285 additions
and
26 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,266 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "8162093e-99cb-4646-93be-9e3a63eecc84", | ||
"metadata": { | ||
"scrolled": true, | ||
"tags": [] | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"%matplotlib inline\n", | ||
"import shutil\n", | ||
"import os\n", | ||
"import glob\n", | ||
"import numpy as np\n", | ||
"import cv2\n", | ||
"from functools import partial\n", | ||
"from PIL import Image, ImageDraw, ImageFont\n", | ||
"from io import BytesIO\n", | ||
"import IPython\n", | ||
"from sklearn.cluster import DBSCAN\n", | ||
"\n", | ||
"from plsc.engine.inference import Predictor" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "3cd617b7-4ace-4d03-ac67-ed6c65b96e00", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Download models and assets\n", | ||
"!mkdir -p models\n", | ||
"if not os.path.exists('models/blazeface_fpn_ssh_1000e_v1.0_infer/inference.pdmodel'):\n", | ||
" !wget https://paddle-model-ecology.bj.bcebos.com/model/insight-face/blazeface_fpn_ssh_1000e_v1.0_infer.tar -P models/\n", | ||
" !tar -xzf models/blazeface_fpn_ssh_1000e_v1.0_infer.tar -C models/\n", | ||
" !rm -rf models/blazeface_fpn_ssh_1000e_v1.0_infer.tar\n", | ||
" \n", | ||
"if not os.path.exists('models/FaceViT_tiny_patch9_112_infer/FaceViT_tiny_patch9_112.pdmodel'):\n", | ||
" !wget https://plsc.bj.bcebos.com/models/face/v2.4/FaceViT_tiny_patch9_112_infer.tgz -P models/\n", | ||
" !tar -xzf models/FaceViT_tiny_patch9_112_infer.tgz -C models/\n", | ||
" !rm -rf models/FaceViT_tiny_patch9_112_infer.tgz\n", | ||
" \n", | ||
"if not os.path.exists('images'):\n", | ||
" !mkdir -p images\n", | ||
" !wget https://plsc.bj.bcebos.com/dataset/BigBang.tgz -P images\n", | ||
" !tar -xzf images/BigBang.tgz --strip-components 1 -C images\n", | ||
" !rm -rf images/BigBang.tgz" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ee26a767-0870-4059-86c4-d855f38434fe", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def draw(img, box_list):\n", | ||
" im = Image.fromarray(img)\n", | ||
" draw = ImageDraw.Draw(im)\n", | ||
"\n", | ||
" for i, dt in enumerate(box_list):\n", | ||
" bbox, score = dt[2:], dt[1]\n", | ||
" color = 'red'\n", | ||
"\n", | ||
" xmin, ymin, xmax, ymax = bbox\n", | ||
" draw.rectangle(\n", | ||
" [(xmin, ymin), (xmax, ymax)], width=2, outline=color)\n", | ||
" return im\n", | ||
"\n", | ||
"def display_img_array(img):\n", | ||
" bio = BytesIO()\n", | ||
" img.save(bio, format='png')\n", | ||
" IPython.display.display(IPython.display.Image(bio.getvalue(), format='png'))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ce6ef4da-d1f7-4f3a-9a25-52b29cf7aa39", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def facedetect_preprocess_fn(img, target_size=[640, 640]):\n", | ||
" resize_h, resize_w = target_size\n", | ||
" img_shape = img.shape\n", | ||
" img_scale_x = resize_w / img_shape[1]\n", | ||
" img_scale_y = resize_h / img_shape[0]\n", | ||
" img = cv2.resize(\n", | ||
" img, None, None, fx=img_scale_x, fy=img_scale_y, interpolation=1)\n", | ||
" \n", | ||
" scale = 1. / 255.\n", | ||
" mean = np.array([[[0.485, 0.456, 0.406]]])\n", | ||
" std = np.array([[[0.229, 0.224, 0.225]]])\n", | ||
"\n", | ||
" img = (img.astype('float32') * scale - mean) / std\n", | ||
" img_info = {}\n", | ||
" img_info[\"im_shape\"] = np.array(\n", | ||
" img.shape[:2], dtype=np.float32)[np.newaxis, :]\n", | ||
" img_info[\"scale_factor\"] = np.array(\n", | ||
" [img_scale_y, img_scale_x], dtype=np.float32)[np.newaxis, :]\n", | ||
"\n", | ||
" img = img.transpose((2, 0, 1)).copy()\n", | ||
" img_info[\"image\"] = img[np.newaxis, :, :, :].astype(np.float32)\n", | ||
" return img_info\n", | ||
"\n", | ||
"def facedetect_postprocess_fn(outputs, thresh=0.8):\n", | ||
" np_boxes = outputs[0]\n", | ||
" expect_boxes = (np_boxes[:, 1] > thresh) & (np_boxes[:, 0] > -1)\n", | ||
" return np_boxes[expect_boxes, :]\n", | ||
"\n", | ||
"face_detector = Predictor(\n", | ||
" model_file='models/blazeface_fpn_ssh_1000e_v1.0_infer/inference.pdmodel',\n", | ||
" params_file='models/blazeface_fpn_ssh_1000e_v1.0_infer/inference.pdiparams',\n", | ||
" preprocess_fn=facedetect_preprocess_fn,\n", | ||
" postprocess_fn=facedetect_postprocess_fn)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "94d384f8-da7b-4dc8-8bd0-2e6ce9c63b01", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def facerecog_preprocess_fn(img):\n", | ||
" scale = 1.0 / 255.0\n", | ||
" mean = 0.5\n", | ||
" std = 0.5\n", | ||
" img = (img.astype('float32') * scale - mean) / std\n", | ||
" img = img[:, :, ::-1]\n", | ||
" img = img.transpose((0, 3, 1, 2))\n", | ||
"\n", | ||
" return {'inputs': img}\n", | ||
"\n", | ||
"def crop_face(img, box_list):\n", | ||
" batch = []\n", | ||
" for idx, box in enumerate(box_list):\n", | ||
" box[box < 0] = 0\n", | ||
" xmin, ymin, xmax, ymax = list(map(int, box[2:]))\n", | ||
" w = xmax - xmin + 1\n", | ||
" h = ymax - ymin + 1\n", | ||
" radius = int(round(max(h, w) / 2.0))\n", | ||
" cx = int(round((xmax + xmin) / 2.0))\n", | ||
" cy = int(round((ymax + ymin) / 2.0))\n", | ||
" xmin = cx - radius\n", | ||
" xmax = cx + radius\n", | ||
" ymin = cy - radius\n", | ||
" ymax = cy + radius\n", | ||
" \n", | ||
" face_img = img[ymin:ymax, xmin:xmax, :]\n", | ||
" face_img = cv2.resize(face_img, (112, 112)).copy()\n", | ||
" batch.append(face_img)\n", | ||
" return np.stack(batch)\n", | ||
"\n", | ||
"face_recog = Predictor(\n", | ||
" model_file='models/FaceViT_tiny_patch9_112_infer/FaceViT_tiny_patch9_112.pdmodel',\n", | ||
" params_file='models/FaceViT_tiny_patch9_112_infer/FaceViT_tiny_patch9_112.pdiparams',\n", | ||
" preprocess_fn=facerecog_preprocess_fn,\n", | ||
" postprocess_fn=None)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "eeea0e11-c565-44ee-a10c-395c8c59097c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"feats_list = []\n", | ||
"fileid_list = []\n", | ||
"boxes_list = []\n", | ||
"\n", | ||
"filenames = glob.glob('images/*.png')\n", | ||
"for idx, filename in enumerate(filenames):\n", | ||
" img = cv2.imread(filename)\n", | ||
" boxes = face_detector.predict(img)\n", | ||
"\n", | ||
" faces = crop_face(img, boxes)\n", | ||
" feats = face_recog.predict(faces)\n", | ||
" \n", | ||
" feats_list.append(feats[0])\n", | ||
" fileid = np.empty(faces.shape[0], dtype=np.int32)\n", | ||
" fileid.fill(idx)\n", | ||
" fileid_list.append(fileid)\n", | ||
" boxes_list.append(boxes)\n", | ||
" \n", | ||
"face_feat = np.concatenate(feats_list, axis=0)\n", | ||
"face_file = np.concatenate(fileid_list, axis=0)\n", | ||
"face_boxes = np.concatenate(boxes_list, axis=0)\n", | ||
"\n", | ||
"X = face_feat / np.linalg.norm(face_feat, axis=-1, keepdims=True)\n", | ||
"\n", | ||
"db = DBSCAN(eps=0.5, min_samples=2, metric=\"cosine\").fit(X) ##metric默认是欧式距离\n", | ||
"core_samples_mask = np.zeros_like(db.labels_, dtype=bool)\n", | ||
"core_samples_mask[db.core_sample_indices_] = True\n", | ||
"labels = db.labels_" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d2c8f5a7-73a6-4341-b794-f11f35960ec6", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"show_image = True\n", | ||
"copy_image = False\n", | ||
"\n", | ||
"clusters = set(labels)\n", | ||
"output_root = 'clusters'\n", | ||
"for clusters_id in clusters:\n", | ||
" # noise cluster\n", | ||
" # if int(clusters_id) == -1:\n", | ||
" # continue\n", | ||
" face_idx = np.where(labels == clusters_id)\n", | ||
" \n", | ||
" sel_fileids = face_file[face_idx]\n", | ||
" sel_boxes = face_boxes[face_idx]\n", | ||
" print()\n", | ||
" print('='*20, f'face id {clusters_id}', '='*20)\n", | ||
" for idx in range(sel_fileids.shape[0]):\n", | ||
" filename = filenames[sel_fileids[idx]]\n", | ||
" img = cv2.imread(filename)\n", | ||
" img_drawed = draw(img[:,:,::-1], [sel_boxes[idx]])\n", | ||
" \n", | ||
" if show_image:\n", | ||
" display_img_array(img_drawed)\n", | ||
"\n", | ||
" if copy_image:\n", | ||
" output_dir = os.path.join(output_root, str(clusters_id))\n", | ||
" if not os.path.exists(output_dir):\n", | ||
" os.makedirs(output_dir)\n", | ||
" shutil.copyfile(filename, os.path.join(output_dir, filename.split('/')[-1]))\n", | ||
"\n", | ||
" if idx == 0:\n", | ||
" cropped = crop_face(img, [sel_boxes[idx]])[0]\n", | ||
" cv2.imwrite(os.path.join(output_dir, 'thumbnail.png'), cropped)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |