Skip to content

Compare state-of-the-art VO/VSLAM/VIO packages in EuRoC datasets. Algorithms include VINS, MSCKF, ORB-SLAM, SVO2 etc.

Notifications You must be signed in to change notification settings

radfordi/vio_evaluation

 
 

Repository files navigation

Evaluation of VIO/VSLAM/VO algorithms

Algorithms Support

Dataset Support

How to build package and run on dataset?

Follow the directions of build.md inside each fold.

Note: raw versions of VINS-MONO and S-MSCKF are run on ROS, while others run without ROS. So we download two format(.zip, .bag) of EuRoC dataset for convenience.

Strictly speaking, it's unfair for package who run with ROS bag. Since if the processing frequency is less than image publish frequency, it will lose frame data. In zip file, all data will be processed.

How to evaluate?

We calculate ATE (Absolute Trajectory Error) between estimate trajectory to the groundtruth. RPE (Relative Pose Error) soon.

After build and run, running result will be stored in 'results' folder. Use evaluate_euroc.py to evaluated.

python evaluate_euroc.py <vio_result_dir>

How to compare?

You can compare two or more algorithms' results.

# Compare two
python compare_evaluate.py alg1_name,alg2_name alg1_result_dir alg2_result_dir
# Compare three
python compare_evaluate.py alg1_name,alg2_name,alg3_name alg1_result_dir alg2_result_dir alg3_result_dir

Results

Algorithms details

algorithms sensor description modification
vins Mono+IMU Optimization-based VIO, sliding window Unable loop closure
smsckf Stereo+IMU Filter-based VIO, Multi-State Constraint Kalman Filter
orbslam Stereo Feature-based VSLAM Unable loop closure
svo Stereo Semi-direct VO, depth filter
ours Stereo+IMU Filter-based VIO

ATE on EuRoC

dataset vins smsckf orbslam svo2 ours
sensor Mono+IMU Stereo+IMU Stereo Stereo Stereo+IMU
MH_01_easy 0.156025 x 0.037896 0.111732 0.185233
MH_02_easy 0.178418 0.152133 0.044086 x 0.116650
MH_03_medium 0.194874 0.289593 0.040688 0.360784 0.229765
MH_04_difficult 0.346300 0.210353 0.088795 2.891935 0.261902
MH_05_difficult 0.302346 0.293128 0.067401 1.199866 0.281594
V1_01_easy 0.088925 0.070955 0.087481 0.061025 0.060067
V1_02_medium 0.110438 0.126732 0.079843 0.081536 0.071677
V1_03_difficult 0.187195 0.203363 0.284315 0.248401 0.163459
V2_01_easy 0.086263 0.065962 0.077287 0.076514 0.056529
V2_02_medium 0.157444 0.175961 0.117782 0.204471 0.097642
V2_03_difficult 0.277569 x x x x

Average frame cost on EuRoC(ms)

Details:

  • vins: cost of processImage() include back-end estimator, exclude front-end, imu pre-integration.
  • smsckf: whole back-end estimator cost.
  • orbslam: whole image cost include front-end and tracker thread, exclude mapping thread.
  • svo2: whole image cost include include tracker thread, exclude mapping thread.
  • ours: same as smsckf
dataset vins smsckf orbslam svo2 ours
MH_01_easy 44.0 2.2 62.4 4.2 11.3
MH_02_easy 43.7 3.4 61.0 9.4 11.8
MH_03_medium 45.3 3.6 59.4 10.6 12.4
MH_04_difficult 40.4 3.6 51.6 10.9 11.1
MH_05_difficult 40.8 3.8 50.1 10.3 11.5
V1_01_easy 48.9 3.4 50.4 10.3 12.0
V1_02_medium 33.8 2.9 50.0 8.5 12.3
V1_03_difficult 24.2 2.5 49.4 10.0 12.3
V2_01_easy 43.7 3.2 50.1 9.2 11.9
V2_02_medium 32.6 2.9 53.8 10.1 13.1
V2_03_difficult 20.8 1.6 51.1 9.2 9.9
Average cost 38.0 3.0 53.6 9.3 11.9
Average FPS 26.3 333.3 18.7 107.5 84.0

Trajectory on EuRoC

dataset vins smsckf orbslam svo2 ours
MH_01_easy a a a a a
MH_02_easy a a a a a
MH_03_medium a a a a a
MH_04_difficult a a a a a
MH_05_difficult a a a a a
V1_01_easy a a a a a
V1_02_medium a a a a a
V1_03_difficult a a a a a
V2_01_easy a a a a a
V2_02_medium a a a a a
V2_03_difficult a a a a a

About

Compare state-of-the-art VO/VSLAM/VIO packages in EuRoC datasets. Algorithms include VINS, MSCKF, ORB-SLAM, SVO2 etc.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%