Skip to content

Commit

Permalink
[MXNET-108] Adding BilinearResize2D and AdaptiveAvgPool2d operators (a…
Browse files Browse the repository at this point in the history
…pache#9688)

* bilinear upsample from PYTorch

* fix cpu backward

* fix indent, add req

* fix lint

* fix lint

* lint

* handle req

* add adaptive avg pooling operator

* rename to bilinear resize

* fix name

* change assertion

* rm unused var

* refactor using mshadow tensor

* rm devicetensor, only using mshadow

* add docs

* naming

* merge

* Revert "merge"

This reverts commit a2a809a.

* add unit test for BilinearResize2D and AdaptiveAvgPool2D

* for test in python2, cast into float

* mv function inside

* link docs

* address the comments

* lint

* add back private ()

*  correct lint

* decleare var

* link params docs

* fix bug

* mv to contrib and upodate docs

* contrib header

* change include path for contrib

* lint

* register to contrib

* lint

* rename width, height, docs

* rename param

* Patch1 (#1)

* two shapes input

* docs

* typo

* lint

* lint
  • Loading branch information
zhanghang1989 authored and piiswrong committed Apr 9, 2018
1 parent 08d800c commit f423116
Show file tree
Hide file tree
Showing 9 changed files with 1,339 additions and 0 deletions.
2 changes: 2 additions & 0 deletions docs/api/python/ndarray/contrib.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,8 @@ In the rest of this document, we list routines provided by the `ndarray.contrib`
.. autosummary::
:nosignatures:
AdaptiveAvgPooling2D
BilinearResize2D
CTCLoss
DeformableConvolution
DeformablePSROIPooling
Expand Down
2 changes: 2 additions & 0 deletions docs/api/python/symbol/contrib.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,8 @@ In the rest of this document, we list routines provided by the `symbol.contrib`
.. autosummary::
:nosignatures:
AdaptiveAvgPooling2D
BilinearResize2D
CTCLoss
DeformableConvolution
DeformablePSROIPooling
Expand Down
195 changes: 195 additions & 0 deletions src/operator/contrib/adaptive_avg_pooling-inl.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2018 by Contributors
* \file adaptive_avg_pooling-inl.h
* \brief adaptive average pooling operator
* \author Hang Zhang
*/
#ifndef MXNET_OPERATOR_CONTRIB_ADAPTIVE_AVG_POOLING_INL_H_
#define MXNET_OPERATOR_CONTRIB_ADAPTIVE_AVG_POOLING_INL_H_

#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <mxnet/operator.h>
#include <mxnet/ndarray.h>
#include <map>
#include <vector>
#include <string>
#include <utility>
/* contrib
#include "../ndarray/ndarray_function.h"
#include "./operator_common.h"
#include "./mxnet_op.h"
#include "./mshadow_op.h"
*/
#include "../../ndarray/ndarray_function.h"
#include "../operator_common.h"
#include "../mxnet_op.h"
#include "../mshadow_op.h"

namespace mxnet {
namespace op {

struct AdaptiveAvgPoolParam : public dmlc::Parameter<AdaptiveAvgPoolParam> {
TShape output_size;
DMLC_DECLARE_PARAMETER(AdaptiveAvgPoolParam) {
DMLC_DECLARE_FIELD(output_size).set_default(TShape())
.describe("int (output size) or a tuple of int for output (height, width).");
}
};

static inline bool IsWriting(const OpReqType ort) {
return ort == kWriteTo || ort == kWriteInplace;
}

template<typename xpu, typename DType, typename AccReal>
void AdaptiveAvgPoolUpdateOutput(mshadow::Stream<cpu> *s,
const std::vector<TBlob> &input,
const std::vector<TBlob> &output);

template<typename xpu, typename DType, typename AccReal>
void AdaptiveAvgPoolUpdateGradInput(mshadow::Stream<cpu> *s,
const std::vector<TBlob> &input,
const std::vector<TBlob> &output);

#if MXNET_USE_CUDA
template<typename xpu, typename DType, typename AccReal>
void AdaptiveAvgPoolUpdateOutput(mshadow::Stream<gpu> *s,
const std::vector<TBlob> &input,
const std::vector<TBlob> &output);

template<typename xpu, typename DType, typename AccReal>
void AdaptiveAvgPoolUpdateGradInput(mshadow::Stream<gpu> *s,
const std::vector<TBlob> &input,
const std::vector<TBlob> &output);
#endif // MXNET_USE_CUDA

template <typename xpu>
inline void AdaptiveAvgPoolOpForward(const nnvm::NodeAttrs& attrs,
const OpContext &ctx,
const std::vector<TBlob> &inputs,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &outputs) {
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
mshadow::Stream<xpu> *s = ctx.get_stream<xpu>();
MSHADOW_REAL_TYPE_SWITCH_EX(inputs[0].type_flag_, DType, AccReal, {
AdaptiveAvgPoolUpdateOutput<xpu, DType, AccReal>(s, inputs, outputs);
});
}


template <typename xpu>
inline void AdaptiveAvgPoolOpBackward(const nnvm::NodeAttrs& attrs,
const OpContext &ctx,
const std::vector<TBlob> &inputs,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &outputs) {
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
mshadow::Stream<xpu> *s = ctx.get_stream<xpu>();
if (IsWriting(req[0])) {
// zero grad before backwarding
MSHADOW_TYPE_SWITCH(inputs[0].type_flag_, DType, {
Fill<false>(s, outputs[0], kWriteTo, 0);
})
}
MSHADOW_REAL_TYPE_SWITCH_EX(inputs[0].type_flag_, DType, AccReal, {
AdaptiveAvgPoolUpdateGradInput<xpu, DType, AccReal>(s, inputs, outputs);
});
}


static bool AdaptiveAvgPoolOpInferShape(const nnvm::NodeAttrs& attrs,
std::vector<TShape> *in_shape,
std::vector<TShape> *out_shape) {
using namespace mshadow;
CHECK_EQ(in_shape->size(), 1U) << "Input:[data]";
CHECK_EQ(out_shape->size(), 1U) << "Output:[data]";
const AdaptiveAvgPoolParam& param = nnvm::get<AdaptiveAvgPoolParam>(attrs.parsed);
TShape dshape(in_shape->at(0));
if (dshape.ndim() == 0) return false;
if (param.output_size.ndim() == 0) {
dshape[2] = 1;
dshape[3] = 1;
} else if (param.output_size.ndim() == 1) {
dshape[2] = param.output_size[0];
dshape[3] = param.output_size[0];
} else if (param.output_size.ndim() == 2) {
dshape[2] = param.output_size[0];
dshape[3] = param.output_size[1];
} else {
dshape[2] = 1;
dshape[3] = 1;
}
out_shape->clear();
out_shape->push_back(dshape);
return true;
}

static bool AdaptiveAvgPoolOpInferType(const nnvm::NodeAttrs& attrs,
std::vector<int> *in_type,
std::vector<int> *out_type) {
using namespace mshadow;
CHECK_EQ(in_type->size(), 1U);
int dtype = (*in_type)[0];
CHECK_NE(dtype, -1) << "First input must have specified type";
// For float16 input type beta, gamma, mean, and average are stored in float32.
// For other input types, these parameters have the same type as input
// NOTE: This requirement is from cuDNN (v. 4 and 5)
int dtype_param = 0;
MSHADOW_REAL_TYPE_SWITCH_EX(dtype, DTypeX, AccRealX, {
dtype_param = mshadow::DataType<AccRealX>::kFlag; });
out_type->clear();
out_type->push_back(dtype_param);
return true;
}

static inline bool AdaptiveAvgPoolOpStorageType(const nnvm::NodeAttrs &attrs,
const int dev_mask,
DispatchMode *dispatch_mode,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
CHECK_EQ(in_attrs->size(), 1);
CHECK_EQ(out_attrs->size(), 1);
*dispatch_mode = DispatchMode::kFCompute;
for (int& v : *in_attrs) {
if (v == - 1) v = kDefaultStorage;
}
for (size_t i = 0; i < out_attrs->size(); i++) {
(*out_attrs)[i] = kDefaultStorage;
}
return true;
}

using namespace mshadow;
template<typename xpu, int Dim, typename DType>
MSHADOW_XINLINE int get_stride(Tensor<xpu, Dim, DType> tensor, int idx) {
int stride = 1;
for (int i = Dim-2; i >= idx; --i) {
stride *= tensor.size(i+1);
}
return stride;
}

} // namespace op
} // namespace mxnet

#endif // MXNET_OPERATOR_CONTRIB_ADAPTIVE_AVG_POOLING_INL_H_
Loading

0 comments on commit f423116

Please sign in to comment.