Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove cudf._lib.interop in favor of inlining pylibcudf #17555

Merged
merged 8 commits into from
Dec 17, 2024
9 changes: 2 additions & 7 deletions python/cudf/cudf/_lib/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,8 @@
# =============================================================================

set(cython_sources
column.pyx copying.pyx csv.pyx groupby.pyx interop.pyx parquet.pyx reduce.pyx scalar.pyx
sort.pyx stream_compaction.pyx string_casting.pyx strings_udf.pyx types.pyx utils.pyx
column.pyx copying.pyx csv.pyx groupby.pyx parquet.pyx reduce.pyx scalar.pyx sort.pyx
stream_compaction.pyx string_casting.pyx strings_udf.pyx types.pyx utils.pyx
)
set(linked_libraries cudf::cudf)

Expand All @@ -25,11 +25,6 @@ rapids_cython_create_modules(
)

target_link_libraries(strings_udf PUBLIC cudf_strings_udf)
target_include_directories(interop PUBLIC "$<BUILD_INTERFACE:${DLPACK_INCLUDE_DIR}>")

include(${rapids-cmake-dir}/export/find_package_root.cmake)
include(../../../../cpp/cmake/thirdparty/get_nanoarrow.cmake)
target_link_libraries(interop PUBLIC nanoarrow)

add_subdirectory(io)
add_subdirectory(nvtext)
1 change: 0 additions & 1 deletion python/cudf/cudf/_lib/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
copying,
csv,
groupby,
interop,
nvtext,
parquet,
reduce,
Expand Down
111 changes: 0 additions & 111 deletions python/cudf/cudf/_lib/interop.pyx

This file was deleted.

47 changes: 19 additions & 28 deletions python/cudf/cudf/core/column/column.py
Original file line number Diff line number Diff line change
Expand Up @@ -282,6 +282,7 @@ def dropna(self) -> Self:
else:
return self.copy()

@acquire_spill_lock()
def to_arrow(self) -> pa.Array:
"""Convert to PyArrow Array

Expand All @@ -298,9 +299,7 @@ def to_arrow(self) -> pa.Array:
4
]
"""
return libcudf.interop.to_arrow([self], [("None", self.dtype)])[
"None"
].chunk(0)
return plc.interop.to_arrow(self.to_pylibcudf(mode="read")).chunk(0)

@classmethod
def from_arrow(cls, array: pa.Array) -> ColumnBase:
Expand Down Expand Up @@ -333,30 +332,20 @@ def from_arrow(cls, array: pa.Array) -> ColumnBase:
elif isinstance(array.type, ArrowIntervalType):
return cudf.core.column.IntervalColumn.from_arrow(array)

data = pa.table([array], [None])
if isinstance(array, pa.ChunkedArray):
array = array.combine_chunks()
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do we always have to combine chunks? IIRC the existing implementation works without combining in most cases, and I don't think combining is free performance-wise so we should avoid it if we can. I could be wrong though, or misremembering an earlier state of the code.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ah right. Yeah this will make a copy on the CPU side.

I see now in libcudf side we only support returning tables (and not columns) from an arrow stream. I was hoping to avoid the dance of putting the chunked array in a pyarrow table but I think the dance is worth avoiding a CPU copy

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks yeah I think this is the right call for now. We could generalize the libcudf APIs in the future if that helps.


if isinstance(array.type, pa.DictionaryType):
indices_table = pa.table(
{
"None": pa.chunked_array(
[chunk.indices for chunk in data["None"].chunks],
type=array.type.index_type,
)
}
)
dictionaries_table = pa.table(
{
"None": pa.chunked_array(
[chunk.dictionary for chunk in data["None"].chunks],
type=array.type.value_type,
)
}
)

codes = libcudf.interop.from_arrow(indices_table)[0]
categories = libcudf.interop.from_arrow(dictionaries_table)[0]
with acquire_spill_lock():
codes = cls.from_pylibcudf(
plc.interop.from_arrow(array.indices)
)
categories = cls.from_pylibcudf(
plc.interop.from_arrow(array.dictionary)
)
codes = cudf.core.column.categorical.as_unsigned_codes(
len(categories), codes
len(categories),
codes, # type: ignore[arg-type]
)
return cudf.core.column.CategoricalColumn(
data=None,
Expand All @@ -367,10 +356,12 @@ def from_arrow(cls, array: pa.Array) -> ColumnBase:
mask=codes.base_mask,
children=(codes,),
)

result = libcudf.interop.from_arrow(data)[0]

return result._with_type_metadata(cudf_dtype_from_pa_type(array.type))
else:
result = cls.from_pylibcudf(plc.interop.from_arrow(array))
# TODO: cudf_dtype_from_pa_type may be less necessary for some types
return result._with_type_metadata(
cudf_dtype_from_pa_type(array.type)
)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is the kind of thing I was thinking of in the other PR. Having a standardized entrypoint of some sort (maybe per-class?) into pylibcudf from cudf Python would help us collect common functionality like _with_type_metadata that we otherwise add piecemeal as we find bugs and incompatibilities with pandas.


@acquire_spill_lock()
def _get_mask_as_column(self) -> ColumnBase:
Expand Down
2 changes: 1 addition & 1 deletion python/cudf/cudf/core/column/datetime.py
Original file line number Diff line number Diff line change
Expand Up @@ -1016,7 +1016,7 @@ def to_pandas(
self.dtype.tz, ambiguous="NaT", nonexistent="NaT"
)

def to_arrow(self):
def to_arrow(self) -> pa.Array:
return pa.compute.assume_timezone(
self._local_time.to_arrow(), str(self.dtype.tz)
)
Expand Down
10 changes: 5 additions & 5 deletions python/cudf/cudf/core/column/decimal.py
Original file line number Diff line number Diff line change
Expand Up @@ -269,8 +269,8 @@ def from_arrow(cls, data: pa.Array):
mask=mask,
)

def to_arrow(self):
data_buf_32 = np.array(self.base_data.memoryview()).view("int32")
def to_arrow(self) -> pa.Array:
data_buf_32 = np.array(self.base_data.memoryview()).view("int32") # type: ignore[union-attr]
data_buf_128 = np.empty(len(data_buf_32) * 4, dtype="int32")

# use striding to set the first 32 bits of each 128-bit chunk:
Expand Down Expand Up @@ -337,7 +337,7 @@ def from_arrow(cls, data: pa.Array):
result.dtype.precision = data.type.precision
return result

def to_arrow(self):
def to_arrow(self) -> pa.Array:
return super().to_arrow().cast(self.dtype.to_arrow())

def _with_type_metadata(
Expand Down Expand Up @@ -396,8 +396,8 @@ def from_arrow(cls, data: pa.Array):
mask=mask,
)

def to_arrow(self):
data_buf_64 = np.array(self.base_data.memoryview()).view("int64")
def to_arrow(self) -> pa.Array:
data_buf_64 = np.array(self.base_data.memoryview()).view("int64") # type: ignore[union-attr]
data_buf_128 = np.empty(len(data_buf_64) * 2, dtype="int64")

# use striding to set the first 64 bits of each 128-bit chunk:
Expand Down
4 changes: 2 additions & 2 deletions python/cudf/cudf/core/column/lists.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,7 +150,7 @@ def offsets(self) -> NumericalColumn:
"""
return cast(NumericalColumn, self.children[0])

def to_arrow(self):
def to_arrow(self) -> pa.Array:
offsets = self.offsets.to_arrow()
elements = (
pa.nulls(len(self.elements))
Expand All @@ -160,7 +160,7 @@ def to_arrow(self):
pa_type = pa.list_(elements.type)

if self.nullable:
nbuf = pa.py_buffer(self.mask.memoryview())
nbuf = pa.py_buffer(self.mask.memoryview()) # type: ignore[union-attr]
buffers = (nbuf, offsets.buffers()[1])
else:
buffers = offsets.buffers()
Expand Down
15 changes: 8 additions & 7 deletions python/cudf/cudf/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -902,16 +902,17 @@ def from_arrow(cls, data: pa.Table) -> Self:
if len(dict_indices):
dict_indices_table = pa.table(dict_indices)
data = data.drop(dict_indices_table.column_names)
indices_columns = libcudf.interop.from_arrow(dict_indices_table)
plc_indices = plc.interop.from_arrow(dict_indices_table)
# as dictionary size can vary, it can't be a single table
cudf_dictionaries_columns = {
name: ColumnBase.from_arrow(dict_dictionaries[name])
for name in dict_dictionaries.keys()
}

for name, codes in zip(
dict_indices_table.column_names, indices_columns
for name, plc_codes in zip(
dict_indices_table.column_names, plc_indices.columns()
):
codes = libcudf.column.Column.from_pylibcudf(plc_codes)
categories = cudf_dictionaries_columns[name]
codes = as_unsigned_codes(len(categories), codes)
cudf_category_frame[name] = CategoricalColumn(
Expand All @@ -927,9 +928,9 @@ def from_arrow(cls, data: pa.Table) -> Self:

# Handle non-dict arrays
cudf_non_category_frame = {
name: col
for name, col in zip(
data.column_names, libcudf.interop.from_arrow(data)
name: libcudf.column.Column.from_pylibcudf(plc_col)
for name, plc_col in zip(
data.column_names, plc.interop.from_arrow(data).columns()
)
}

Expand Down Expand Up @@ -988,7 +989,7 @@ def from_arrow(cls, data: pa.Table) -> Self:
return cls._from_data({name: result[name] for name in column_names})

@_performance_tracking
def to_arrow(self):
def to_arrow(self) -> pa.Table:
"""
Convert to arrow Table

Expand Down
27 changes: 16 additions & 11 deletions python/cudf/cudf/io/dlpack.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,14 @@
# Copyright (c) 2019-2024, NVIDIA CORPORATION.
from __future__ import annotations

import pylibcudf as plc

import cudf
from cudf._lib import interop as libdlpack
from cudf.core.column import ColumnBase
from cudf.utils import ioutils


def from_dlpack(pycapsule_obj):
def from_dlpack(pycapsule_obj) -> cudf.Series | cudf.DataFrame:
"""Converts from a DLPack tensor to a cuDF object.
DLPack is an open-source memory tensor structure:
Expand All @@ -33,18 +34,21 @@ def from_dlpack(pycapsule_obj):
cuDF from_dlpack() assumes column-major (Fortran order) input. If the input
tensor is row-major, transpose it before passing it to this function.
"""
plc_table = plc.interop.from_dlpack(pycapsule_obj)
data = dict(
enumerate(
(ColumnBase.from_pylibcudf(col) for col in plc_table.columns())
)
)

columns = libdlpack.from_dlpack(pycapsule_obj)
data = dict(enumerate(columns))

if len(columns) == 1:
if len(data) == 1:
return cudf.Series._from_data(data)
else:
return cudf.DataFrame._from_data(data)


@ioutils.doc_to_dlpack()
def to_dlpack(cudf_obj):
def to_dlpack(cudf_obj: cudf.Series | cudf.DataFrame | cudf.BaseIndex):
"""Converts a cuDF object to a DLPack tensor.
DLPack is an open-source memory tensor structure:
Expand Down Expand Up @@ -80,13 +84,14 @@ def to_dlpack(cudf_obj):

if any(
not cudf.api.types._is_non_decimal_numeric_dtype(dtype)
for _, dtype in gdf._dtypes
for _, dtype in gdf._dtypes # type: ignore[union-attr]
):
raise TypeError("non-numeric data not yet supported")

dtype = cudf.utils.dtypes.find_common_type(
[dtype for _, dtype in gdf._dtypes]
[dtype for _, dtype in gdf._dtypes] # type: ignore[union-attr]
)
gdf = gdf.astype(dtype)

return libdlpack.to_dlpack([*gdf._columns])
return plc.interop.to_dlpack(
plc.Table([col.to_pylibcudf(mode="read") for col in gdf._columns])
)
Loading