-
Notifications
You must be signed in to change notification settings - Fork 403
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Perf] Add a CPU-based training workload (#2116)
- Loading branch information
1 parent
296d480
commit c099de4
Showing
2 changed files
with
220 additions
and
0 deletions.
There are no files selected for viewing
57 changes: 57 additions & 0 deletions
57
ray-operator/config/samples/pytorch-mnist/ray-job.pytorch-mnist.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
apiVersion: ray.io/v1 | ||
kind: RayJob | ||
metadata: | ||
name: rayjob-pytorch-mnist | ||
spec: | ||
shutdownAfterJobFinishes: false | ||
entrypoint: python ray-operator/config/samples/pytorch-mnist/ray_train_pytorch_mnist.py | ||
runtimeEnvYAML: | | ||
pip: | ||
- torch | ||
- torchvision | ||
working_dir: "https://github.com/ray-project/kuberay/archive/master.zip" | ||
# rayClusterSpec specifies the RayCluster instance to be created by the RayJob controller. | ||
rayClusterSpec: | ||
rayVersion: '2.9.0' | ||
headGroupSpec: | ||
rayStartParams: {} | ||
# Pod template | ||
template: | ||
spec: | ||
containers: | ||
- name: ray-head | ||
image: rayproject/ray:2.9.0 | ||
ports: | ||
- containerPort: 6379 | ||
name: gcs-server | ||
- containerPort: 8265 # Ray dashboard | ||
name: dashboard | ||
- containerPort: 10001 | ||
name: client | ||
resources: | ||
limits: | ||
cpu: "2" | ||
memory: "4Gi" | ||
requests: | ||
cpu: "2" | ||
memory: "4Gi" | ||
workerGroupSpecs: | ||
- replicas: 4 | ||
minReplicas: 1 | ||
maxReplicas: 5 | ||
groupName: small-group | ||
rayStartParams: {} | ||
# Pod template | ||
template: | ||
spec: | ||
containers: | ||
- name: ray-worker | ||
image: rayproject/ray:2.9.0 | ||
resources: | ||
limits: | ||
cpu: "2" | ||
memory: "4Gi" | ||
requests: | ||
cpu: "2" | ||
memory: "4Gi" |
163 changes: 163 additions & 0 deletions
163
ray-operator/config/samples/pytorch-mnist/ray_train_pytorch_mnist.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
""" | ||
Reference: https://docs.ray.io/en/master/train/examples/pytorch/torch_fashion_mnist_example.html | ||
This script is a modified version of the original PyTorch Fashion MNIST | ||
example. It uses only CPU resources to train the MNIST model. See | ||
`ScalingConfig` for more details. | ||
""" | ||
import os | ||
from typing import Dict | ||
|
||
import torch | ||
from filelock import FileLock | ||
from torch import nn | ||
from torch.utils.data import DataLoader | ||
from torchvision import datasets, transforms | ||
from torchvision.transforms import Normalize, ToTensor | ||
from tqdm import tqdm | ||
|
||
import ray.train | ||
from ray.train import ScalingConfig | ||
from ray.train.torch import TorchTrainer | ||
|
||
|
||
def get_dataloaders(batch_size): | ||
# Transform to normalize the input images | ||
transform = transforms.Compose([ToTensor(), Normalize((0.5,), (0.5,))]) | ||
|
||
with FileLock(os.path.expanduser("~/data.lock")): | ||
# Download training data from open datasets | ||
training_data = datasets.FashionMNIST( | ||
root="~/data", | ||
train=True, | ||
download=True, | ||
transform=transform, | ||
) | ||
|
||
# Download test data from open datasets | ||
test_data = datasets.FashionMNIST( | ||
root="~/data", | ||
train=False, | ||
download=True, | ||
transform=transform, | ||
) | ||
|
||
# Create data loaders | ||
train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True) | ||
test_dataloader = DataLoader(test_data, batch_size=batch_size) | ||
|
||
return train_dataloader, test_dataloader | ||
|
||
|
||
# Model Definition | ||
class NeuralNetwork(nn.Module): | ||
def __init__(self): | ||
super(NeuralNetwork, self).__init__() | ||
self.flatten = nn.Flatten() | ||
self.linear_relu_stack = nn.Sequential( | ||
nn.Linear(28 * 28, 512), | ||
nn.ReLU(), | ||
nn.Dropout(0.25), | ||
nn.Linear(512, 512), | ||
nn.ReLU(), | ||
nn.Dropout(0.25), | ||
nn.Linear(512, 10), | ||
nn.ReLU(), | ||
) | ||
|
||
def forward(self, x): | ||
x = self.flatten(x) | ||
logits = self.linear_relu_stack(x) | ||
return logits | ||
|
||
|
||
def train_func_per_worker(config: Dict): | ||
lr = config["lr"] | ||
epochs = config["epochs"] | ||
batch_size = config["batch_size_per_worker"] | ||
|
||
# Get dataloaders inside the worker training function | ||
train_dataloader, test_dataloader = get_dataloaders(batch_size=batch_size) | ||
|
||
# [1] Prepare Dataloader for distributed training | ||
# Shard the datasets among workers and move batches to the correct device | ||
# ======================================================================= | ||
train_dataloader = ray.train.torch.prepare_data_loader(train_dataloader) | ||
test_dataloader = ray.train.torch.prepare_data_loader(test_dataloader) | ||
|
||
model = NeuralNetwork() | ||
|
||
# [2] Prepare and wrap your model with DistributedDataParallel | ||
# Move the model to the correct GPU/CPU device | ||
# ============================================================ | ||
model = ray.train.torch.prepare_model(model) | ||
|
||
loss_fn = nn.CrossEntropyLoss() | ||
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9) | ||
|
||
# Model training loop | ||
for epoch in range(epochs): | ||
if ray.train.get_context().get_world_size() > 1: | ||
# Required for the distributed sampler to shuffle properly across epochs. | ||
train_dataloader.sampler.set_epoch(epoch) | ||
|
||
model.train() | ||
for X, y in tqdm(train_dataloader, desc=f"Train Epoch {epoch}"): | ||
pred = model(X) | ||
loss = loss_fn(pred, y) | ||
|
||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
model.eval() | ||
test_loss, num_correct, num_total = 0, 0, 0 | ||
with torch.no_grad(): | ||
for X, y in tqdm(test_dataloader, desc=f"Test Epoch {epoch}"): | ||
pred = model(X) | ||
loss = loss_fn(pred, y) | ||
|
||
test_loss += loss.item() | ||
num_total += y.shape[0] | ||
num_correct += (pred.argmax(1) == y).sum().item() | ||
|
||
test_loss /= len(test_dataloader) | ||
accuracy = num_correct / num_total | ||
|
||
# [3] Report metrics to Ray Train | ||
# =============================== | ||
ray.train.report(metrics={"loss": test_loss, "accuracy": accuracy}) | ||
|
||
|
||
def train_fashion_mnist(num_workers=2, use_gpu=False): | ||
global_batch_size = 32 | ||
|
||
train_config = { | ||
"lr": 1e-3, | ||
"epochs": 10, | ||
"batch_size_per_worker": global_batch_size // num_workers, | ||
} | ||
|
||
# Configure computation resources | ||
scaling_config = ScalingConfig( | ||
num_workers=num_workers, | ||
use_gpu=use_gpu, | ||
resources_per_worker={"CPU": 2} | ||
) | ||
|
||
# Initialize a Ray TorchTrainer | ||
trainer = TorchTrainer( | ||
train_loop_per_worker=train_func_per_worker, | ||
train_loop_config=train_config, | ||
scaling_config=scaling_config, | ||
) | ||
|
||
# [4] Start distributed training | ||
# Run `train_func_per_worker` on all workers | ||
# ============================================= | ||
result = trainer.fit() | ||
print(f"Training result: {result}") | ||
|
||
|
||
if __name__ == "__main__": | ||
train_fashion_mnist(num_workers=4) |