Skip to content

Identify cell types underlying the associations found in GWAS summary statistics

Notifications You must be signed in to change notification settings

rbutleriii/MAGMA_Celltyping

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Exactly the same as the original, but with:

  • renamed ctd datasets so they don't overwrite one another
  • linux friendly versions of the R scripts for GWAS dataset prep

Using MAGMA to find causative celltypes for genetically complex traits using MAGMA

Nathan Skene & Julien Bryois 2018-11-08

Introduction

This R package contains code used for testing which cell types can explain the heritability signal from GWAS summary statistics. The method was described in our 2018 Nature Genetics paper, "Genetic identification of brain cell types underlying schizophrenia". This package takes GWAS summary statistics & Single Cell Transcriptome specificity data (in EWCE's CTD format) as input. As output it calculates the associations between the GWAS trait and the celltypes.

Installation

Before installing this package it is neccesary to install the magma software package. Please download it from https://ctg.cncr.nl/software/magma. The executable should then be copied to /usr/local/bin so that R can find it. Then install this package as follows:

install.packages("devtools")
library(devtools)
install_github("nathanskene/ewce")
install_github("nathanskene/MAGMA_Celltyping")

Using the package (basic usage)

Set parameters to be used for the analysis

# Set path the 1000 genomes reference data.
genome_ref_dir = "~/Downloads/g1000_eur"
if(!file.exists(sprintf("%s/g1000_eur.bed",genome_ref_dir))){
    download.file("https://ctg.cncr.nl/software/MAGMA/ref_data/g1000_eur.zip",destfile=sprintf("%s.zip",genome_ref_dir))
    unzip(sprintf("%s.zip",genome_ref_dir),exdir=genome_ref_dir)
}
genome_ref_path = sprintf("%s/g1000_eur",genome_ref_dir)

Install and load all the required R packages and data

The EWCE package comes with a celltype specificity dataset which we use as an example. The One2One package is used to obtain 1:1 orthologs.

library(MAGMA.Celltyping)

# Load the celltype data
data(ctd)

# Load the mouse to human 1:1 orthologs
data(ortholog_data_Mouse_Human)

Note that the cell type dataset loaded in the code above is the Karolinksa cortex/hippocampus data only. For the full Karolinska dataset with hypothalamus and midbrain instead use the following:

data(ctd_allKI)

Or for the DRONC seq or AIBS datasets use

data(ctd_AIBS)
data(ctd_DRONC_human)
data(ctd_DRONC_human)

Prepare quantile groups for celltypes

First we need to calculate the quantile groups for each celltype within the single cell dataset. This is done using the prepare.quantile.groups function. If your single cell dataset is not from mouse, then change the specificity_species argument. If you wish to use a smaller number of bins then

ctd = prepare.quantile.groups(ctd,specificity_species="mouse",numberOfBins=40)

# Examine how the quantile groups look
print(ctd[[1]]$quantiles[c("Gfap","Dlg4","Aif1"),])
print(table(ctd[[1]]$quantiles[,1]))

Download summary statistics file & check it is properly formatted

We need to have a summary statistics file to analyse as input. As an example download summary statistics for Fluid Intelligence, based on the UK Biobank, generated by Ben Neale's group.

The function check.sumstats.formatted.for.magma does some basic processing to get it into the right format.

# Download and unzip the summary statistics file
library(R.utils)
#gwas_sumstats_path = "~/Downloads/20016.assoc.tsv"
gwas_sumstats_path = "/Users/natske/GWAS_Summary_Statistics/20016.assoc.tsv"
if(!file.exists(gwas_sumstats_path)){
    download.file("https://www.dropbox.com/s/shsiq0brkax886j/20016.assoc.tsv.gz?raw=1",destfile=sprintf("%s.gz",gwas_sumstats_path))
    gunzip(sprintf("%s.gz",gwas_sumstats_path),gwas_sumstats_path)
}

# Format it (i.e. column headers etc)
col_headers = format_sumstats_for_magma(gwas_sumstats_path)

Map SNPs to Genes

genesOutPath = map.snps.to.genes(gwas_sumstats_path,genome_ref_path=genome_ref_path)

Run the main cell type association analysis

The analyses can be run in either linear or top10% enrichment modes. Let's start with linear:

ctAssocsLinear = calculate_celltype_associations(ctd,gwas_sumstats_path,genome_ref_path=genome_ref_path,specificity_species = "mouse")
FigsLinear = plot_celltype_associations(ctAssocsLinear,ctd=ctd)

Now let's add the top 10% mode

ctAssocsTop = calculate_celltype_associations(ctd,gwas_sumstats_path,genome_ref_path=genome_ref_path,EnrichmentMode = "Top 10%")
FigsTopDecile = plot_celltype_associations(ctAssocsTop,ctd=ctd)

Then plot linear together with the top decile mode

ctAssocMerged = merge_magma_results(ctAssocsLinear,ctAssocsTop)
FigsMerged = plot_celltype_associations(ctAssocMerged,ctd=ctd)

Run the conditional cell type association analysis

# Conditional analysis
ctCondAssocs = calculate_conditional_celltype_associations(ctd,gwas_sumstats_path,genome_ref_path=genome_ref_path,analysis_name = "Conditional")
plot_celltype_associations(ctCondAssocs,ctd=ctd)

Controlling for a second GWAS

We now want to test enrichments that remain in a GWAS after we control for a second GWAS. So let's download a second GWAS sumstats file and prepare it for analysis.

20018.assoc.tsv is the sumstats file for 'Prospective memory result' from the UK Biobank.

20016.assoc.tsv is the sumstats file for 'Fluid Intelligence Score' from the UK Biobank.

So let's subtract genes associated with prospective memory from those involved in fluid intelligence.

Download and prepare the 'Prospective memory' GWAS summary statistics

# Download and unzip the summary statistics file
library(R.utils)
gwas_sumstats_path = "~/GWAS_Summary_Statistics/20018.assoc.tsv"
if(!file.exists(gwas_sumstats_path)){
    download.file("https://www.dropbox.com/s/shsiq0brkax886j/20016.assoc.tsv.gz?raw=1",destfile=sprintf("%s.gz",gwas_sumstats_path))
    gunzip(sprintf("%s.gz",gwas_sumstats_path),gwas_sumstats_path)
}

# Format & map SNPs to genes
col_headers = format_sumstats_for_magma(gwas_sumstats_path)
genesOutPath = map.snps.to.genes(gwas_sumstats_path,genome_ref_path=genome_ref_path)

Check which cell types this GWAS is associated with at baseline

gwas_sumstats_path_Memory = "~/GWAS_Summary_Statistics/20018.assoc.tsv"
gwas_sumstats_path_Intelligence = "~/GWAS_Summary_Statistics/20016.assoc.tsv"
ctAssocsLinearMemory = calculate_celltype_associations(ctd,gwas_sumstats_path_Memory,genome_ref_path=genome_ref_path,specificity_species = "mouse")
ctAssocsLinearIntelligence = calculate_celltype_associations(ctd,gwas_sumstats_path_Intelligence,genome_ref_path=genome_ref_path,specificity_species = "mouse")
plot_celltype_associations(ctAssocsLinearMemory,ctd=ctd)

Compare enrichments in the two GWAS using a tile plot

ctAssocMerged_MemInt = merge_magma_results(ctAssocsLinearMemory,ctAssocsLinearIntelligence)
FigsMerged_MemInt = magma.tileplot(ctd=ctd,results=ctAssocMerged_MemInt[[1]]$results,annotLevel=1,fileTag="Merged_MemInt_lvl1",output_path = "~/Desktop")
FigsMerged_MemInt = magma.tileplot(ctd=ctd,results=ctAssocMerged_MemInt[[2]]$results,annotLevel=2,fileTag="Merged_MemInt_lvl2",output_path = "~/Desktop")

Check which cell types 'Fluid Intelligence' is associated with after controlling for 'Prospective memory'

gwas_sumstats_path = "/Users/natske/GWAS_Summary_Statistics/20016.assoc.tsv"
memoryGenesOut = "~/GWAS_Summary_Statistics/MAGMA_Files/20018.assoc.tsv.10UP.1.5DOWN/20018.assoc.tsv.10UP.1.5DOWN.genes.out"
ctAssocsLinear = calculate_celltype_associations(ctd,gwas_sumstats_path,genome_ref_path=genome_ref_path,specificity_species = "mouse",genesOutCOND=memoryGenesOut,analysis_name = "ControllingForPropMemory")
FigsLinear = plot_celltype_associations(ctAssocsLinear,ctd=ctd,fileTag = "ControllingForPropMemory")

We find that after controlling for prospective memory, there is no significant enrichment left associated with fluid intelligence.

Who do I talk to?

If you have any issues using the package then please get in touch with Nathan Skene (nathan.skene at ki.se). Bug reports etc are all most welcome, we want the package to be easy to use for everyone!

Citation

If you use the software then please cite

Skene, et al. Genetic identification of brain cell types underlying schizophrenia. Nature Genetics, 2018.

The package utilises the MAGMA package developed in the Complex Trait Genetics lab at VU university (not us!) so please also cite their work:

de Leeuw, et al. MAGMA: Generalized gene-set analysis of GWAS data. PLoS Comput Biol, 2015.

If you use the EWCE package as well then please cite

Skene, et al. Identification of Vulnerable Cell Types in Major Brain Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment. Front. Neurosci, 2016.

If you use the cortex/hippocampus single cell data associated with this package then please cite the following papers:

Zeisel, et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 2015.

If you use the midbrain and hypothalamus single cell datasets associated with the 2018 paper then please cite the following papers:

La Manno, et al. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells. Cell, 2016.

Romanov, et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nature Neuroscience, 2016.

About

Identify cell types underlying the associations found in GWAS summary statistics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 99.7%
  • Shell 0.3%