This repository contains code for the paper "Imbalanced Semi-supervised Learning with Bias Adaptive Classifier" by Renzhen Wang, Xixi Jia, Quanziang Wang, Yichen Wu and Deyu Meng.
python3
pytorch == 1.10.0
torchvision
scipy
Please check out run.sh
for all the scripts to run our method (L2AC).
if you want to run train_fix_l2ac.py on CIFAR-10 with the same imbalance ratios (e.g., 100) between labeled and unlabeled data.
python train_fix_l2ac.py --gpu 0 --ratio 2 --num_max 1500 --imb_ratio_l 100 --imb_ratio_u 100 --epoch 500
--val-iteration 500 --out result/cifar10@N_1500_r_100_100_fix_l2ac --dataset cifar10 --workers 0
If you find our work useful for your research, please cite with the following bibtex:
@inproceedings{wangimbalanced,
title={Imbalanced Semi-supervised Learning with Bias Adaptive Classifier},
author={Wang, Renzhen and Jia, Xixi and Wang, Quanziang and Wu, Yichen and Meng, Deyu},
booktitle={International Conference on Learning Representations}
year = {2023},
}
Please feel free to contact "rzwang@xjtu.edu.cn".