forked from galv/kaldi
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[egs] Add more modern DNN recipe for fisher_callhome_spanish (kaldi-a…
- Loading branch information
Showing
8 changed files
with
662 additions
and
81 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
# config for high-resolution MFCC features, intended for neural network training. | ||
# Note: we keep all cepstra, so it has the same info as filterbank features, | ||
# but MFCC is more easily compressible (because less correlated) which is why | ||
# we prefer this method. | ||
--use-energy=false # use average of log energy, not energy. | ||
--sample-frequency=8000 # Switchboard is sampled at 8kHz | ||
--num-mel-bins=40 # similar to Google's setup. | ||
--num-ceps=40 # there is no dimensionality reduction. | ||
--low-freq=40 # low cutoff frequency for mel bins | ||
--high-freq=-200 # high cutoff frequently, relative to Nyquist of 4000 (=3800) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
# configuration file for apply-cmvn-online, used in the script ../local/run_online_decoding.sh |
288 changes: 288 additions & 0 deletions
288
egs/fisher_callhome_spanish/s5/local/chain/run_tdnn_1g.sh
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,288 @@ | ||
#!/bin/bash | ||
|
||
# 1g is like 1f but upgrading to a "resnet-style TDNN-F model", i.e. | ||
# with bypass resnet connections, and re-tuned. | ||
# compute-wer --text --mode=present ark:exp/chain/multipsplice_tdnn/decode_fsp_train_test/scoring_kaldi/test_filt.txt ark,p:- | ||
# %WER 22.21 [ 8847 / 39831, 1965 ins, 2127 del, 4755 sub ] | ||
# %SER 56.98 [ 3577 / 6278 ] | ||
# Scored 6278 sentences, 0 not present in hyp. | ||
|
||
# steps/info/chain_dir_info.pl exp/chain/multipsplice_tdnn | ||
# exp/chain/multipsplice_tdnn: num-iters=296 nj=1..2 num-params=8.2M dim=40+100->2489 combine=-0.170->-0.165 (over 8) xent:train/valid[196,295,final]=(-2.30,-1.93,-1.83/-2.24,-1.96,-1.86) logprob:train/valid[196,295,final]=(-0.208,-0.169,-0.164/-0.189,-0.161,-0.158) | ||
|
||
set -e -o pipefail | ||
|
||
# First the options that are passed through to run_ivector_common.sh | ||
# (some of which are also used in this script directly). | ||
stage=0 | ||
nj=30 | ||
train_set=train | ||
test_sets="test dev" | ||
gmm=tri5a # this is the source gmm-dir that we'll use for alignments; it | ||
# should have alignments for the specified training data. | ||
num_threads_ubm=32 | ||
nnet3_affix= # affix for exp dirs, e.g. it was _cleaned in tedlium. | ||
|
||
# Options which are not passed through to run_ivector_common.sh | ||
affix=1g #affix for TDNN+LSTM directory e.g. "1a" or "1b", in case we change the configuration. | ||
common_egs_dir= | ||
reporting_email= | ||
|
||
# LSTM/chain options | ||
train_stage=-10 | ||
xent_regularize=0.1 | ||
dropout_schedule='0,0@0.20,0.3@0.50,0' | ||
|
||
# training chunk-options | ||
chunk_width=140,100,160 | ||
# we don't need extra left/right context for TDNN systems. | ||
chunk_left_context=0 | ||
chunk_right_context=0 | ||
|
||
# training options | ||
srand=0 | ||
remove_egs=true | ||
|
||
#decode options | ||
test_online_decoding=false # if true, it will run the last decoding stage. | ||
|
||
# End configuration section. | ||
echo "$0 $@" # Print the command line for logging | ||
|
||
|
||
. ./cmd.sh | ||
. ./path.sh | ||
. ./utils/parse_options.sh | ||
|
||
|
||
if ! cuda-compiled; then | ||
cat <<EOF && exit 1 | ||
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA | ||
If you want to use GPUs (and have them), go to src/, and configure and make on a machine | ||
where "nvcc" is installed. | ||
EOF | ||
fi | ||
|
||
if [ $stage -le 15 ]; then | ||
echo "local/nnet3/run_ivector_common.sh \ | ||
--stage $stage --nj $nj \ | ||
--train-set $train_set --gmm $gmm \ | ||
--num-threads-ubm $num_threads_ubm \ | ||
--nnet3-affix "$nnet3_affix"" | ||
|
||
local/nnet3/run_ivector_common.sh \ | ||
--stage $stage --nj $nj \ | ||
--train-set $train_set --gmm $gmm \ | ||
--num-threads-ubm $num_threads_ubm \ | ||
--nnet3-affix "$nnet3_affix" | ||
|
||
fi | ||
|
||
|
||
gmm_dir=exp/${gmm} | ||
ali_dir=exp/${gmm}_ali_${train_set}_sp | ||
lat_dir=exp/tri5a_lats_nodup_sp | ||
dir=exp/chain/multipsplice_tdnn | ||
train_data_dir=data/${train_set}_sp_hires | ||
train_ivector_dir=exp/nnet3/ivectors_train_sp_hires | ||
lores_train_data_dir=data/${train_set}_sp | ||
|
||
# note: you don't necessarily have to change the treedir name | ||
# each time you do a new experiment-- only if you change the | ||
# configuration in a way that affects the tree. | ||
tree_dir=exp/chain/${gmm}_tree | ||
# the 'lang' directory is created by this script. | ||
# If you create such a directory with a non-standard topology | ||
# you should probably name it differently. | ||
lang=data/lang_${gmm}_chain | ||
|
||
#for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \ | ||
# $lores_train_data_dir/feats.scp $gmm_dir/final.mdl \ | ||
# $ali_dir/ali.1.gz $gmm_dir/final.mdl; do | ||
# [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 | ||
#done | ||
|
||
|
||
if [ $stage -le 16 ]; then | ||
echo "$0: creating lang directory $lang with chain-type topology" | ||
# Create a version of the lang/ directory that has one state per phone in the | ||
# topo file. [note, it really has two states.. the first one is only repeated | ||
# once, the second one has zero or more repeats.] | ||
if [ -d $lang ]; then | ||
if [ $lang/L.fst -nt data/lang/L.fst ]; then | ||
echo "$0: $lang already exists, not overwriting it; continuing" | ||
else | ||
echo "$0: $lang already exists and seems to be older than data/lang..." | ||
echo " ... not sure what to do. Exiting." | ||
exit 1; | ||
fi | ||
else | ||
cp -r data/lang $lang | ||
silphonelist=$(cat $lang/phones/silence.csl) || exit 1; | ||
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1; | ||
# Use our special topology... note that later on may have to tune this | ||
# topology. | ||
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo | ||
fi | ||
fi | ||
|
||
if [ $stage -le 17 ]; then | ||
# Get the alignments as lattices (gives the chain training more freedom). | ||
# use the same num-jobs as the alignments | ||
steps/align_fmllr_lats.sh --nj 100 --cmd "$train_cmd" ${lores_train_data_dir} \ | ||
data/lang $gmm_dir $lat_dir | ||
rm $lat_dir/fsts.*.gz # save space | ||
fi | ||
|
||
if [ $stage -le 18 ]; then | ||
# Build a tree using our new topology. We know we have alignments for the | ||
# speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use | ||
# those. The num-leaves is always somewhat less than the num-leaves from | ||
# the GMM baseline. | ||
if [ -f $tree_dir/final.mdl ]; then | ||
echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it." | ||
exit 1; | ||
fi | ||
steps/nnet3/chain/build_tree.sh \ | ||
--frame-subsampling-factor 3 \ | ||
--context-opts "--context-width=2 --central-position=1" \ | ||
--cmd "$train_cmd" 3500 ${lores_train_data_dir} \ | ||
$lang $ali_dir $tree_dir | ||
fi | ||
|
||
|
||
if [ $stage -le 19 ]; then | ||
mkdir -p $dir | ||
echo "$0: creating neural net configs using the xconfig parser"; | ||
|
||
num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}') | ||
learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python) | ||
tdnn_opts="l2-regularize=0.01 dropout-proportion=0.0 dropout-per-dim-continuous=true" | ||
tdnnf_opts="l2-regularize=0.01 dropout-proportion=0.0 bypass-scale=0.66" | ||
linear_opts="l2-regularize=0.01 orthonormal-constraint=-1.0" | ||
prefinal_opts="l2-regularize=0.01" | ||
output_opts="l2-regularize=0.005" | ||
|
||
mkdir -p $dir/configs | ||
cat <<EOF > $dir/configs/network.xconfig | ||
input dim=100 name=ivector | ||
input dim=40 name=input | ||
# please note that it is important to have input layer with the name=input | ||
# as the layer immediately preceding the fixed-affine-layer to enable | ||
# the use of short notation for the descriptor | ||
fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat | ||
# the first splicing is moved before the lda layer, so no splicing here | ||
relu-batchnorm-dropout-layer name=tdnn1 $tdnn_opts dim=1024 | ||
tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1 | ||
tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1 | ||
tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1 | ||
tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=0 | ||
tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 | ||
tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 | ||
tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 | ||
tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 | ||
tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 | ||
tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 | ||
tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 | ||
tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3 | ||
linear-component name=prefinal-l dim=192 $linear_opts | ||
prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1024 small-dim=192 | ||
output-layer name=output include-log-softmax=false dim=$num_targets $output_opts | ||
prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1024 small-dim=192 | ||
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts | ||
EOF | ||
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ | ||
fi | ||
|
||
|
||
if [ $stage -le 20 ]; then | ||
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then | ||
utils/create_split_dir.pl \ | ||
/export/b0{3,4,5,6}/$USER/kaldi-data/egs/wsj-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage | ||
fi | ||
|
||
steps/nnet3/chain/train.py --stage=$train_stage \ | ||
--cmd "$decode_cmd" \ | ||
--feat.online-ivector-dir $train_ivector_dir \ | ||
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \ | ||
--chain.xent-regularize $xent_regularize \ | ||
--chain.leaky-hmm-coefficient 0.1 \ | ||
--chain.l2-regularize 0.0 \ | ||
--chain.apply-deriv-weights false \ | ||
--chain.lm-opts="--num-extra-lm-states=2000" \ | ||
--trainer.dropout-schedule $dropout_schedule \ | ||
--trainer.srand $srand \ | ||
--trainer.max-param-change 2.0 \ | ||
--trainer.num-epochs 4 \ | ||
--trainer.frames-per-iter 5000000 \ | ||
--trainer.optimization.num-jobs-initial 1 \ | ||
--trainer.optimization.num-jobs-final=2 \ | ||
--trainer.optimization.initial-effective-lrate 0.0005 \ | ||
--trainer.optimization.final-effective-lrate 0.00005 \ | ||
--trainer.num-chunk-per-minibatch 128,64 \ | ||
--trainer.optimization.momentum 0.0 \ | ||
--egs.chunk-width $chunk_width \ | ||
--egs.chunk-left-context 0 \ | ||
--egs.chunk-right-context 0 \ | ||
--egs.dir "$common_egs_dir" \ | ||
--egs.opts "--frames-overlap-per-eg 0" \ | ||
--cleanup.remove-egs $remove_egs \ | ||
--use-gpu true \ | ||
--feat-dir $train_data_dir \ | ||
--tree-dir $tree_dir \ | ||
--lat-dir exp/tri5a_lats_nodup_sp \ | ||
--dir $dir || exit 1; | ||
fi | ||
|
||
if [ $stage -le 21 ]; then | ||
# The reason we are using data/lang_test here, instead of $lang, is just to | ||
# emphasize that it's not actually important to give mkgraph.sh the | ||
# lang directory with the matched topology (since it gets the | ||
# topology file from the model). So you could give it a different | ||
# lang directory, one that contained a wordlist and LM of your choice, | ||
# as long as phones.txt was compatible. | ||
#LM was trained only on Fisher Spanish train subset. | ||
|
||
utils/mkgraph.sh \ | ||
--self-loop-scale 1.0 data/lang_test \ | ||
$tree_dir $tree_dir/graph_fsp_train || exit 1; | ||
|
||
fi | ||
|
||
rnnlmdir=exp/rnnlm_lstm_tdnn_1b | ||
if [ $stage -le 22 ]; then | ||
local/rnnlm/train_rnnlm.sh --dir $rnnlmdir || exit 1; | ||
fi | ||
|
||
if [ $stage -le 23 ]; then | ||
frames_per_chunk=$(echo $chunk_width | cut -d, -f1) | ||
rm $dir/.error 2>/dev/null || true | ||
|
||
for data in $test_sets; do | ||
( | ||
nspk=$(wc -l <data/${data}_hires/spk2utt) | ||
for lmtype in fsp_train; do | ||
steps/nnet3/decode.sh \ | ||
--acwt 1.0 --post-decode-acwt 10.0 \ | ||
--extra-left-context 0 --extra-right-context 0 \ | ||
--extra-left-context-initial 0 \ | ||
--extra-right-context-final 0 \ | ||
--frames-per-chunk $frames_per_chunk \ | ||
--nj $nspk --cmd "$decode_cmd" --num-threads 4 \ | ||
--online-ivector-dir exp/nnet3/ivectors_${data}_hires \ | ||
$tree_dir/graph_${lmtype} data/${data}_hires ${dir}/decode_${lmtype}_${data} || exit 1; | ||
done | ||
bash local/rnnlm/lmrescore_nbest.sh 1.0 data/lang_test $rnnlmdir data/${data}_hires/ \ | ||
${dir}/decode_${lmtype}_${data} $dir/decode_rnnLM_${lmtype}_${data} || exit 1; | ||
) || touch $dir/.error & | ||
done | ||
wait | ||
[ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1 | ||
fi | ||
|
||
exit 0; |
Oops, something went wrong.