Generic Assembly and Reconstruction pIpeline (GARI)
Nextflow pipeline for the denovo genome reconstruction of bacterial pathogens. The pipeline comprises the following steps/modules:
- Read QC
- Genome Assembly/Reconstruction
- Assembly QC
- assembly-scan to produce general assembly statistics
- bbmap to remap the reads to the assembly and calculate coverage, etc.
- Kraken2 to check for contamination
- FastANI to identify the reference genome with the highest nucleotide identity.
- BUSCO to check for genomic completeness using conserved single-copy core genes
- CheckM to check for genomic completeness and contamination using conserved single-copy core genes
Note If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with
-profile test
before running the workflow on actual data. (NOT SETUP YET...)
Now, you can run the pipeline using:
nextflow run /path/to/gari -profile <singularity, docker, conda, mamba> -params-file params.yaml
The pipeline needs a few input parameters to be defined. This can be done either directly in the command line, or via a parameter file (params.yaml as in the command above). Using a params file is advised. Here is a minimum example of a params file with the required parameters:
params.yaml
:
input: '/path/to/input/samplesheet.csv'
outdir: '/path/to/output'
reference: '/path/to/ref_list.csv'
The additional flags in the command e.g. "-profile" will define how the pipeline is executed e.g. singularity, conda, mamba or docker (singularity is advised if available). When executing the pipeline on a HPC with a queuing system you might want to limit the amount of jobs submitted in parallel you can use the option "-queue-size 20" to limit the jobs submitted to the queue to 20 in the nextflow command above.
name | required (to set by user) | description | type in config | default value |
---|---|---|---|---|
input | YES | path to input samplesheet in csv format (more detailed explanation below) | string | null |
reference | YES | path to list of references in csv format (more detailed explanation below) | string | null |
outdir | YES | path to output directory | string | null |
kraken_db | NO | path to precomputed Kraken2 database to sue for classification | string | null (will download and use the babykraken DB if no local DB is specified) |
tmp_dir | NO | path to temp directory (used for some processes) | string | /tmp/ |
qc_mode | NO | if set to true expects assemblies as input and only performs QC | boolean | false |
preset | NO | predefined preset settings to use (more details below) | string | |
assembler | NO | assembler to use (options: 'spades', 'shovill' or 'skesa') | string | 'spades' |
busco_lin | NO (but advised) | BUSCO lineage to use for assessment of genomic completeness | string | 'bacteria_odb10' |
busco_data | NO | path to local copy of BUSCO lineages datasets, if not set BUSCO downloads the lineages itself | string | |
checkm_db | NO | path to local copy of checkM database, if not set checkM downloads the database itself | string | |
fastp_params | NO | additional parameters to add to the FASTP command | string | '--detect_adapter_for_pe' |
krakenR_params | NO | additional parameters to add to the KRAKEN2 command assessing reads | string | '--minimum-base-quality 10 --minimum-hit-groups 3 --confidence 0.05' |
krakenA_params | NO | additional parameters to add to the KRAKEN2 command assessing assemblies | string | '--minimum-base-quality 10 --minimum-hit-groups 3 --confidence 0.05' |
spades_params | NO | additional parameters to add to the SPADES command | string | '--isolate' |
shovill_params | NO | additional parameters to add to the SHOVILL command | string | |
skesa_params | NO | additional parameters to add to the SKESA command | string | |
busco_params | NO | additional parameters to add to the BUSCO command | string | '--mode genome' |
publish_dir_enabled | NO | --- | boolean | false |
publish_dir_mode | NO | --- | string | 'copy' |
First, prepare a samplesheet with your input data that looks as follows, with each row representing a pair of fastq files (paired end):
samplesheet.csv
:
sample,fastq_1,fastq_2,species
S1,/path/to/S1_R1.fastq.gz,/path/to/S1_R2.fastq.gz,Escherichia coli
S2,/path/to/S2_R1.fastq.gz,/path/to/S2_R2.fastq.gz,Acinetobacter baumannii
...
A samplesheet like the one shown above can be created using the python script 'createSampleSheet_GARI.py' within the bin folder. Given a directory containing paired-end reads and a seperator/delimiter to reduce the filename to a sampleID this script will create a samplesheet directly usable for GARI (for more information on usage check the help function of the python script). If no species information can or is provided the species field will be filled with NA. In this case no comparison to the identified reference will be performed. When run in QC-mode (--qc_mode true) assemblies need to be provided as an input in the samplesheet. For this purpose assemblies are added the the fastq_1 column while the fastq_2 column is left empty. A samplesheet in QC-mode would look like:
sample,fastq_1,fastq_2,species
S1,/path/to/S1_ASM.fasta,,Escherichia coli
S2,/path/to/S2_ASM.fasta,,Acinetobacter baumannii
...
The reference list, that must be provided, is a tab separated file with two fields 1. the path to a reference file and 2. the species name. The references provided are used for the reference identification with fastANI the species names will be used to compare to the expected species provided in the samplesheet. Strain information can be given as well as seen below. GARI will then pick the reference with the highest identity and use its statistics for comparison. Its is possible to use a single reference by just having one entry in the reference list. An example of a reference list could look like:
ref_list.tsv
:
/path/to/GCF_000005845.2_ASM584v2_genomic.fna.gz Escherichia coli str. K-12 substr. MG1655
/path/to/GCF_000006945.2_ASM694v2_genomic.fna.gz Salmonella enterica subsp. enterica serovar Typhimurium str. LT2
/path/to/GCF_000008865.2_ASM886v2_genomic.fna.gz Escherichia coli O157:H7 str. Sakai
...
A basic bash script downloadGenomes.sh
to download bacterial reference genomes and create a reference list required for GARI are provided and can be executed before running the pipeline (folder bin/reference_list_setup). The script will download RefSeq reference genomes for all species provided in the input file bacteria_species.txt
and create the reference list. But feel free to adjust bacteria_species.txt
to your needs and add or remove species. NOTE: to execute these scripts the NCBI datasets CLI & python(v.3+) are expected to be present in your PATH.
The krakenDB is the path of the kraken2 database used to classify reads and assembly. Some precomuted Kraken2 databses can be found here.
The busco_lin defines the busco lineage to be used when running BUSCO. While busco_data defines the path where the local copy of the lineages defined can be found.
Warning: Please provide pipeline parameters via the CLI or Nextflow
-params-file
option. Custom config files including those provided by the-c
Nextflow option can be used to provide any configuration except for parameters; see docs.
GARI outputs a variety of assembly and assembly quality statistics that can be found in the final GARI report. A subset of these values is used to "classify" each generated assembly into the categories: "PASSED", "FLAGGED" and "FAILED".
parameter | only species specific | default threshold | description |
---|---|---|---|
flag_max_total_contigs | NO | 500 | - |
flag_min_BUSCO_S | NO | 95 | - |
fail_min_BUSCO_S | NO | 90 | - |
flag_max_BUSCO_D | NO | 1 | - |
fail_max_BUSCO_D | NO | 5 | - |
flag_AvgCov | NO | 50 | - |
fail_AvgCov | NO | 30 | - |
flag_PercMapped | NO | 98 | - |
fail_PercMapped | NO | 90 | - |
flag_ref_ident | NO | 90 | - |
flag_checkM_complete | NO | 98 | - |
fail_checkM_complete | NO | 95 | - |
flag_checkM_contamination | NO | 2 | - |
fail_checkM_contamination | NO | 10 | - |
flag_krakenTarget | NO | 60 | - |
flag_krakenHost | NO | 5 | - |
flag_max_length | YES | - | - |
fail_max_length | YES | - | - |
flag_min_length | YES | - | - |
fail_min_length | YES | - | - |
flag_max_GC | YES | - | - |
flag_min_GC | YES | - | - |
Thresholds are defined in the file QC_thresholds.json
within the GARI assests folder. Species specific thresholds are defined for 56 common bacterial species. These species specific thresholds were calculated using complete RefSeq genomes from NCBI. Thresholds to flag assemblies are generally based on the 10/90% quantiles of the RefSeq assemblies while thresholds to fail assemblies are based on the 0/100% quantiles.
Feel free to add a new species to QC_thresholds.json if needed.
GARI allows to define presets of run wide parameters. This is mostly useful when running GARI with specific settings that should be also be applied to a later dataset, so the parameters dont need to be specified for each run.
Such presets are defined in the presets.config
within the config folder. Defining the preset parameter to any string defined in the presets.config will automatically load these setting and apply them to the run of GARI.
Feel free to define new presets within bin/presets.config if needed.
When running gari on the HPC you need to set the executor to use slurm. This can be done either in a configfile provided via -c <file.config> or by defining it in e.g. your .bashrc like:
export NXF_EXECUTOR=slurm
Additionally you can set the directory where singularity images used to run nextflow modules are cached, so they can be reused and do not need to be downloaded for each execution of GARI:
export NXF_SINGULARITY_CACHEDIR='/path/to/NEXTFLOW_CACHE_folder/'
GARI was originally written by Maximilian Driller.
We thank the following people for their extensive assistance in the development of this pipeline:
Silver A. Wolf, Torsten Houwaart, Lakshmipriya Thrukonda, Vladimir Bajić and Mustafa Helal
If you would like to contribute to this pipeline, please see the contributing guidelines.
An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md
file.
This pipeline uses code and infrastructure developed and maintained by the nf-core community, reused here under the MIT license.
The nf-core framework for community-curated bioinformatics pipelines.
Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen. Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.
Shifu Chen, Yanqing Zhou, Yaru Chen, Jia Gu, fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics, Volume 34, Issue 17, September 2018, Pages i884–i890, https://doi.org/10.1093/bioinformatics/bty560
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes de novo assembler. Current Protocols in Bioinformatics, 70, e102. doi: 10.1002/cpbi.102
Wood, D.E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257 (2019). https://doi.org/10.1186/s13059-019-1891-0
Felipe A. Simão, Robert M. Waterhouse, Panagiotis Ioannidis, Evgenia V. Kriventseva, Evgeny M. Zdobnov, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics, Volume 31, Issue 19, October 2015, Pages 3210–3212, https://doi.org/10.1093/bioinformatics/btv351
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015 Jul;25(7):1043-55. doi: 10.1101/gr.186072.114. Epub 2015 May 14. PMID: 25977477; PMCID: PMC4484387.