Out-of-vocabulary words are drawbacks of word embeddings. Sometimes both word and character features are used. The characters in a word are first mapped to character embeddings, then a bidirectional recurrent neural layer is used to encode the character embeddings to a single vector. The final feature of a word is the concatenation of the word embedding and the encoded character feature.
The repository contains some functions and a wrapper class that could be used to generate the first few layers that encodes the features of words and characters.
pip install keras-word-char-embd
There is a sentiment analysis demo in the demo
directory. Run the following commands, then your model should have about 70% accuracy:
cd demo
./get_data.sh
python sentiment_analysis.py
This section only introduces the basic usages of the functions. For more detailed information please refer to the demo and the doc comments describing the functions in the source code.
The function returns a closure used to generate word and character dictionaries. The closure should be invoked for all the training sentences in order to record the frequencies of each word or character. After that, setting the parameter return_dict=True
the dictionaries would be returned.
from keras_wc_embd import get_dicts_generator
sentences = [
['All', 'work', 'and', 'no', 'play'],
['makes', 'Jack', 'a', 'dull', 'boy', '.'],
]
dict_generator = get_dicts_generator(
word_min_freq=2,
char_min_freq=2,
word_ignore_case=False,
char_ignore_case=False,
)
for sentence in sentences:
dict_generator(sentence)
word_dict, char_dict, max_word_len = dict_generator(return_dict=True)
You can generate dictionaries on your own, but make sure index 0
and index for <UNK>
are preserved.
Generate the first few layers that encodes words in a sentence:
import keras
from keras_wc_embd import get_embedding_layer
inputs, embd_layer = get_embedding_layer(
word_dict_len=len(word_dict),
char_dict_len=len(char_dict),
max_word_len=max_word_len,
word_embd_dim=300,
char_embd_dim=50,
char_hidden_dim=150,
char_hidden_layer_type='lstm',
)
model = keras.models.Model(inputs=inputs, outputs=embd_layer)
model.summary()
The output shape of embd_layer
should be (None, None, 600)
, which represents the batch size, the length of sentence and the length of encoded word feature.
char_hidden_layer_type
could be 'lstm', 'gru', 'cnn', a Keras layer or a list of Keras layers.
The function is used to generate the batch inputs for the model.
from keras_wc_embd import get_batch_input
word_embd_input, char_embd_input = get_batch_input(
sentences,
max_word_len=max_word_len,
word_dict=word_dict,
char_dict=char_dict,
)
A helper function that loads pre-trained embeddings for initializing the weights of the embedding layer. The format of the file should be similar to GloVe.
from keras_wc_embd import get_embedding_layer, get_embedding_weights_from_file
word_embd_weights = get_embedding_weights_from_file(word_dict, 'glove.6B.100d.txt', ignore_case=True)
inputs, embd_layer = get_embedding_layer(
word_dict_len=len(word_dict),
char_dict_len=len(char_dict),
max_word_len=max_word_len,
word_embd_dim=300,
char_embd_dim=50,
char_hidden_dim=150,
word_embd_weights=word_embd_weights,
char_hidden_layer_type='lstm',
)
There is a wrapper class that makes things easier.
from keras_wc_embd import WordCharEmbd
sentences = [
['All', 'work', 'and', 'no', 'play'],
['makes', 'Jack', 'a', 'dull', 'boy', '.'],
]
wc_embd = WordCharEmbd(
word_min_freq=0,
char_min_freq=0,
word_ignore_case=False,
char_ignore_case=False,
)
for sentence in sentences:
wc_embd.update_dicts(sentence)
inputs, embd_layer = wc_embd.get_embedding_layer()
lstm_layer = keras.layers.LSTM(units=5, name='LSTM')(embd_layer)
softmax_layer = keras.layers.Dense(units=2, activation='softmax', name='Softmax')(lstm_layer)
model = keras.models.Model(inputs=inputs, outputs=softmax_layer)
model.compile(
optimizer='adam',
loss=keras.losses.sparse_categorical_crossentropy,
metrics=[keras.metrics.sparse_categorical_accuracy],
)
model.summary()
def batch_generator():
while True:
yield wc_embd.get_batch_input(sentences), np.asarray([0, 1])
model.fit_generator(
generator=batch_generator(),
steps_per_epoch=200,
epochs=1,
)
Several papers have done the same thing. Just choose the one you have seen.