编译 cd cmd/ebpf_exporter go build -o ebpf_exporter cp cmd/ebpf_exporter/ebpf_exporter ./
打包docker镜像 docker build -t rubinus/ebpf_exporter:v2.0 .
Prometheus exporter for custom eBPF metrics.
Motivation of this exporter is to allow you to write eBPF code and export metrics that are not otherwise accessible from the Linux kernel.
eBPF was described by Ingo Molnár as:
One of the more interesting features in this cycle is the ability to attach eBPF programs (user-defined, sandboxed bytecode executed by the kernel) to kprobes. This allows user-defined instrumentation on a live kernel image that can never crash, hang or interfere with the kernel negatively.
An easy way of thinking about this exporter is bcc tools as prometheus metrics:
- https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md
- http://www.brendangregg.com/ebpf.html
epbf_exporter
depends on libbcc
to instrument the kernel, and you need
to have it installed on your system. Please consule bcc
documentation:
Note that there's a dependency between bcc
version you have on your system
and gobpf
, which is Go's library to talk to libbcc
. If you see errors
pointing to argument mismatch, it probably means that your libbcc
version
doesn't match what gobpf
expects. Currently ebpf_exporter
works with bcc
0.22.0, but if you see issues with newer versions, please file an issue.
This setup also prevents us from providing prebuilt static binaries.
If you can figure out a way to statically link bcc
into ebpf_exporter
to remove this nuisance, your contribution will be most welcome.
To build a binary from latest sources:
$ go get -u -v github.com/cloudflare/ebpf_exporter/...
To run with bio
config (you need root
privileges):
$ ~/go/bin/ebpf_exporter --config.file=src/github.com/cloudflare/ebpf_exporter/examples/bio.yaml
If you pass --debug
, you can see raw tables at /tables
endpoint.
There's a Dockerfile
in repo root that builds both bcc
and ebpf_exporter
.
It's not intended for running, but rather to ensure that we have a predefined
build environment in which everything compiles successfully.
See benchmark directory to get an idea of how low ebpf overhead is.
Currently the only supported way of getting data out of the kernel is via maps (we call them tables in configuration). See:
See examples section for real world examples.
If you have examples you want to share, please feel free to open a PR.
Skip to format to see the full specification.
You can find additional examples in examples directory.
Unless otherwise specified, all examples are expected to work on Linux 4.14, which is the latest LTS release at the time of writing.
In general, exported to work from Linux 4.1. See BCC docs for more details:
This program attaches to kernel functions responsible for managing page cache and counts pages going through them.
This is an adapted version of cachestat
from bcc tools:
Resulting metrics:
# HELP ebpf_exporter_page_cache_ops_total Page cache operation counters by type
# TYPE ebpf_exporter_page_cache_ops_total counter
ebpf_exporter_page_cache_ops_total{command="syslog-ng",op="account_page_dirtied"} 1531
ebpf_exporter_page_cache_ops_total{command="syslog-ng",op="add_to_page_cache_lru"} 1092
ebpf_exporter_page_cache_ops_total{command="syslog-ng",op="mark_buffer_dirty"} 31205
ebpf_exporter_page_cache_ops_total{command="syslog-ng",op="mark_page_accessed"} 54846
ebpf_exporter_page_cache_ops_total{command="systemd-journal",op="account_page_dirtied"} 104681
ebpf_exporter_page_cache_ops_total{command="systemd-journal",op="add_to_page_cache_lru"} 7330
ebpf_exporter_page_cache_ops_total{command="systemd-journal",op="mark_buffer_dirty"} 125486
ebpf_exporter_page_cache_ops_total{command="systemd-journal",op="mark_page_accessed"} 898214
You can check out cachestat
source code to see how these translate:
programs:
- name: cachestat
metrics:
counters:
- name: page_cache_ops_total
help: Page cache operation counters by type
table: counts
labels:
- name: op
size: 8
decoders:
- name: ksym
- name: command
size: 128
decoders:
- name: string
- name: regexp
regexps:
- ^systemd-journal$
- ^syslog-ng$
kprobes:
add_to_page_cache_lru: do_count
mark_page_accessed: do_count
account_page_dirtied: do_count
mark_buffer_dirty: do_count
code: |
#include <uapi/linux/ptrace.h>
struct key_t {
u64 ip;
char command[128];
};
BPF_HASH(counts, struct key_t);
int do_count(struct pt_regs *ctx) {
struct key_t key = { .ip = PT_REGS_IP(ctx) - 1 };
bpf_get_current_comm(&key.command, sizeof(key.command));
counts.increment(key);
return 0;
}
This program attaches to block io subsystem and reports metrics on disk latency and request sizes for separate disks.
The following tools are working with similar concepts:
- https://github.com/iovisor/bcc/blob/master/tools/biosnoop_example.txt
- https://github.com/iovisor/bcc/blob/master/tools/biolatency_example.txt
- https://github.com/iovisor/bcc/blob/master/tools/bitesize_example.txt
This program was the initial reason for the exporter and was heavily influenced by the experimental exporter from Daniel Swarbrick:
Resulting metrics:
# HELP ebpf_exporter_bio_latency_seconds Block IO latency histogram
# TYPE ebpf_exporter_bio_latency_seconds histogram
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="1e-06"} 0
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="2e-06"} 0
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="4e-06"} 0
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="8e-06"} 0
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="1.6e-05"} 0
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="3.2e-05"} 0
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="6.4e-05"} 2
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="0.000128"} 388
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="0.000256"} 20086
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="0.000512"} 21601
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="0.001024"} 22487
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="0.002048"} 25592
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="0.004096"} 26891
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="0.008192"} 27835
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="0.016384"} 28540
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="0.032768"} 28725
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="0.065536"} 28776
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="0.131072"} 28786
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="0.262144"} 28790
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="0.524288"} 28792
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="1.048576"} 28792
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="2.097152"} 28792
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="4.194304"} 28792
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="8.388608"} 28792
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="16.777216"} 28792
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="33.554432"} 28792
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="67.108864"} 28792
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="read",le="+Inf"} 28792
ebpf_exporter_bio_latency_seconds_sum{device="sda",operation="read"} 0
ebpf_exporter_bio_latency_seconds_count{device="sda",operation="read"} 28792
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="1e-06"} 0
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="2e-06"} 0
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="4e-06"} 0
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="8e-06"} 0
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="1.6e-05"} 0
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="3.2e-05"} 508
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="6.4e-05"} 2828
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="0.000128"} 5701
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="0.000256"} 8520
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="0.000512"} 11975
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="0.001024"} 12448
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="0.002048"} 16798
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="0.004096"} 26909
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="0.008192"} 41248
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="0.016384"} 59030
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="0.032768"} 86501
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="0.065536"} 118934
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="0.131072"} 122148
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="0.262144"} 122373
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="0.524288"} 122462
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="1.048576"} 122470
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="2.097152"} 122470
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="4.194304"} 122470
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="8.388608"} 122470
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="16.777216"} 122470
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="33.554432"} 122470
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="67.108864"} 122470
ebpf_exporter_bio_latency_seconds_bucket{device="sda",operation="write",le="+Inf"} 122470
ebpf_exporter_bio_latency_seconds_sum{device="sda",operation="write"} 0
ebpf_exporter_bio_latency_seconds_count{device="sda",operation="write"} 122470
...
# HELP ebpf_exporter_bio_size_bytes Block IO size histogram with kibibyte buckets
# TYPE ebpf_exporter_bio_size_bytes histogram
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="1024"} 14
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="2048"} 14
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="4096"} 28778
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="8192"} 28778
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="16384"} 28778
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="32768"} 28778
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="65536"} 28779
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="131072"} 28781
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="262144"} 28785
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="524288"} 28792
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="1.048576e+06"} 28792
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="2.097152e+06"} 28792
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="4.194304e+06"} 28792
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="8.388608e+06"} 28792
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="1.6777216e+07"} 28792
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="3.3554432e+07"} 28792
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="read",le="+Inf"} 28792
ebpf_exporter_bio_size_bytes_sum{device="sda",operation="read"} 0
ebpf_exporter_bio_size_bytes_count{device="sda",operation="read"} 28792
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="1024"} 1507
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="2048"} 4007
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="4096"} 15902
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="8192"} 17726
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="16384"} 18429
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="32768"} 19639
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="65536"} 19676
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="131072"} 20367
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="262144"} 21952
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="524288"} 49636
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="1.048576e+06"} 122470
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="2.097152e+06"} 122470
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="4.194304e+06"} 122470
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="8.388608e+06"} 122470
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="1.6777216e+07"} 122470
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="3.3554432e+07"} 122470
ebpf_exporter_bio_size_bytes_bucket{device="sda",operation="write",le="+Inf"} 122470
ebpf_exporter_bio_size_bytes_sum{device="sda",operation="write"} 0
ebpf_exporter_bio_size_bytes_count{device="sda",operation="write"} 122470
...
To nicely plot these in Grafana, you'll need v5.1:
programs:
# See:
# * https://github.com/iovisor/bcc/blob/master/tools/biolatency.py
# * https://github.com/iovisor/bcc/blob/master/tools/biolatency_example.txt
#
# See also: bio-tracepoints.yaml
- name: bio
metrics:
histograms:
- name: bio_latency_seconds
help: Block IO latency histogram
table: io_latency
bucket_type: exp2
bucket_min: 0
bucket_max: 26
bucket_multiplier: 0.000001 # microseconds to seconds
labels:
- name: device
size: 32
decoders:
- name: string
- name: operation
size: 8
decoders:
- name: uint
- name: static_map
static_map:
1: read
2: write
- name: bucket
size: 8
decoders:
- name: uint
- name: bio_size_bytes
help: Block IO size histogram with kibibyte buckets
table: io_size
bucket_type: exp2
bucket_min: 0
bucket_max: 15
bucket_multiplier: 1024 # kibibytes to bytes
labels:
- name: device
size: 32
decoders:
- name: string
- name: operation
size: 8
decoders:
- name: uint
- name: static_map
static_map:
1: read
2: write
- name: bucket
size: 8
decoders:
- name: uint
kprobes:
blk_start_request: trace_req_start
blk_mq_start_request: trace_req_start
blk_account_io_completion: trace_req_completion
code: |
#include <linux/blkdev.h>
#include <linux/blk_types.h>
typedef struct disk_key {
char disk[32];
u8 op;
u64 slot;
} disk_key_t;
// Max number of disks we expect to see on the host
const u8 max_disks = 255;
// 27 buckets for latency, max range is 33.6s .. 67.1s
const u8 max_latency_slot = 26;
// 16 buckets per disk in kib, max range is 16mib .. 32mib
const u8 max_size_slot = 15;
// Hash to temporily hold the start time of each bio request, max 10k in-flight by default
BPF_HASH(start, struct request *);
// Histograms to record latencies
BPF_HISTOGRAM(io_latency, disk_key_t, (max_latency_slot + 2) * max_disks);
// Histograms to record sizes
BPF_HISTOGRAM(io_size, disk_key_t, (max_size_slot + 2) * max_disks);
// Record start time of a request
int trace_req_start(struct pt_regs *ctx, struct request *req) {
u64 ts = bpf_ktime_get_ns();
start.update(&req, &ts);
return 0;
}
// Calculate request duration and store in appropriate histogram bucket
int trace_req_completion(struct pt_regs *ctx, struct request *req, unsigned int bytes) {
u64 *tsp, delta;
// Fetch timestamp and calculate delta
tsp = start.lookup(&req);
if (tsp == 0) {
return 0; // missed issue
}
// There are write request with zero length on sector zero,
// which do not seem to be real writes to device.
if (req->__sector == 0 && req->__data_len == 0) {
return 0;
}
// Disk that received the request
struct gendisk *disk = req->rq_disk;
// Delta in nanoseconds
delta = bpf_ktime_get_ns() - *tsp;
// Convert to microseconds
delta /= 1000;
// Latency histogram key
u64 latency_slot = bpf_log2l(delta);
// Cap latency bucket at max value
if (latency_slot > max_latency_slot) {
latency_slot = max_latency_slot;
}
disk_key_t latency_key = { .slot = latency_slot };
bpf_probe_read(&latency_key.disk, sizeof(latency_key.disk), &disk->disk_name);
// Size in kibibytes
u64 size_kib = bytes / 1024;
// Request size histogram key
u64 size_slot = bpf_log2(size_kib);
// Cap latency bucket at max value
if (size_slot > max_size_slot) {
size_slot = max_size_slot;
}
disk_key_t size_key = { .slot = size_slot };
bpf_probe_read(&size_key.disk, sizeof(size_key.disk), &disk->disk_name);
if ((req->cmd_flags & REQ_OP_MASK) == REQ_OP_WRITE) {
latency_key.op = 2;
size_key.op = 2;
} else {
latency_key.op = 1;
size_key.op = 1;
}
io_latency.increment(latency_key);
io_size.increment(size_key);
// Increment sum keys
latency_key.slot = max_latency_slot + 1;
io_latency.increment(latency_key, delta);
size_key.slot = max_size_slot + 1;
io_size.increment(size_key, size_kib);
start.delete(&req);
return 0;
}
There is also a tracepoint based equivalent of this example in examples
.
Programs combine a piece of eBPF code running in the kernel with configuration describing how to export collected data as prometheus metrics. There may be multiple programs running from one exporter instance.
Metrics define what values we get from eBPF program running in the kernel.
Counters from maps are straightforward: you pull data out of kernel, transform map keys into sets of labels and export them as prometheus counters.
Histograms from maps are a bit more complex than counters. Maps in the kernel cannot be nested, so we need to pack keys in the kernel and unpack in user space.
We get from this:
sda, read, 1ms -> 10 ops
sda, read, 2ms -> 25 ops
sda, read, 4ms -> 51 ops
To this:
sda, read -> [1ms -> 10 ops, 2ms -> 25 ops, 4ms -> 51 ops]
Prometheus histograms expect to have all buckets when we report a metric, but the kernel creates keys as events occur, which means we need to backfill the missing data.
That's why for histogram configuration we have the following keys:
bucket_type
: can be eitherexp2
,linear
, orfixed
bucket_min
: minimum bucket key (exp2
andlinear
only)bucket_max
: maximum bucket key (exp2
andlinear
only)bucket_keys
: maximum bucket key (fixed
only)bucket_multiplier
: multiplier for bucket keys (default is1
)
For exp2
histograms we expect kernel to provide a map with linear keys that
are log2 of actual values. We then go from bucket_min
to bucket_max
in
user space and remap keys by exponentiating them:
count = 0
for i = bucket_min; i < bucket_max; i++ {
count += map.get(i, 0)
result[exp2(i) * bucket_multiplier] = count
}
Here map
is the map from the kernel and result
is what goes to prometheus.
We take cumulative count
, because this is what prometheus expects.
For linear
histograms we expect kernel to provide a map with linear keys
that are results of integer division of original value by bucket_multiplier
.
To reconstruct the histogram in user space we do the following:
count = 0
for i = bucket_min; i < bucket_max; i++ {
count += map.get(i, 0)
result[i * bucket_multiplier] = count
}
For fixed
histograms we expect kernel to provide a map with fixed keys
defined by the user.
count = 0
for i = 0; i < len(bucket_keys); i++ {
count += map.get(bucket_keys[i], 0)
result[bucket_keys[i] * multiplier] = count
}
For exp2
and linear
hisograms, if bucket_max + 1
contains a non-zero
value, it will be used as a sum
key in histogram, providing additional
information.
For fixed
histograms, if buckets_keys[len(bucket_keys) -1 ] + 1
contains
a non-zero value, it will be used as a sum
key.
For both exp2
and linear
histograms it is important that kernel does
not count events into buckets outside of [bucket_min, bucket_max]
range.
If you encounter a value above your range, truncate it to be in it. You're
losing +Inf
bucket, but usually it's not that big of a deal.
Each kernel map key must count values under that key's value to match
the behavior of prometheus. For example, exp2
histogram key 3
should
count values for (exp2(2), exp2(3)]
interval: (4, 8]
. To put it simply:
use bpf_log2l
or integer division and you'll be good.
The side effect of implementing histograms this way is that some granularity
is lost due to either taking log2
or division. We explicitly set _sum
key
of prometheus histogram to zero to avoid confusion around this.
Labels transform kernel map keys into prometheus labels.
Maps coming from the kernel are binary encoded. Values are always u64
, but
keys can be primitive types like u64
or structs.
Each label can be transformed with decoders (see below) according to metric configuration. Generally number of labels matches number of elements in the kernel map key.
For map keys that are represented as structs alignment rules apply:
u64
must be aligned at 8 byte boundaryu32
must be aligned at 4 byte boundaryu16
must be aligned at 2 byte boundary
This means that the following struct:
typedef struct disk_key {
char disk[32];
u8 op;
u64 slot;
} disk_key_t;
Is represented as:
- 32 byte
disk
char array - 1 byte
op
integer - 7 byte padding to align
slot
- 8 byte
slot
integer
When decoding, label sizes should be supplied with padding included:
- 32 for
disk
- 8 for
op
(1 byte value + 7 byte padding) - 8 byte
slot
Decoders take a byte slice input of requested length and transform it into
a byte slice representing a string. That byte slice can either be consumed
by another decoder (for example string
-> regexp
) or or used as the final
label value exporter to Prometheus.
Below are decoders we have built in.
KSym decoder takes kernel address and converts that to the function name.
In your eBPF program you can use PT_REGS_IP(ctx)
to get the address
of the kprobe you attached to as a u64
variable. Note that sometimes
you can observe PT_REGS_IP
being off by one. You can subtract 1 in your code
to make it point to the right instruction that can be found /proc/kallsyms
.
Regexp decoder takes list of strings from regexp
configuration key
of the decoder and ties to use each as a pattern in golang.org/pkg/regexp
:
If decoder input matches any of the patterns, it is permitted. Otherwise, the whole metric label set is dropped.
An example to report metrics only for systemd-journal
and syslog-ng
:
- name: command
decoders:
- name: string
- name: regexp
regexps:
- ^systemd-journal$
- ^syslog-ng$
Static map decoder takes input and maps it to another value via static_map
configuration key of the decoder. Values are expected as strings.
An example to match 1
to read
and 2
to write
:
- name: operation
decoders:
- name:static_map
static_map:
1: read
2: write
Unkown keys will be replaced by "unknown:key_name"
unless allow_unknown: true
is specified in the decoder. For example, the above will decode 3
to unknown:3
and the below example will decode 3
to 3
:
- name: operation
decoders:
- name:static_map
allow_unknown: true
static_map:
1: read
2: write
String decoder transforms possibly null terminated strings coming from the kernel into string usable for prometheus metrics.
Dname decoder read DNS qname from string in wire format, then decode
it into '.' notation format. Could be used after string
decoder.
E.g.: \x07example\03com\x00
will become example.com
. This decoder
could be used after string
decode, like the following example:
- name: qname
decoders:
- name: string
- name: dname
UInt decoder transforms hex encoded uint
values from the kernel
into regular numbers. For example: 0xe -> 14
.
Configuration file is defined like this:
# List of eBPF programs to run
- programs:
[ - <program> ]
See Programs section for more details.
# Program name
name: <program name>
# Metrics attached to the program
[ metrics: metrics ]
# Kprobes (kernel functions) and their targets (eBPF functions)
kprobes:
[ kprobename: target ... ]
# Kretprobes (kernel functions) and their targets (eBPF functions)
kretprobes:
[ kprobename: target ... ]
# Tracepoints (category:name, i.e. timer:timer_start) and their targets (eBPF functions)
tracepoints:
[ tracepoint: target ... ]
# Raw tracepoints (name, i.e. timer_start) and their targets (eBPF functions)
raw_tracepoints:
[ tracepoint: target ... ]
# Perf events configuration
perf_events:
[ - perf_event ]
# Cflags are passed to the bcc compiler, useful for preprocessing
cflags:
[ - -I/include/path
- -DMACRO_NAME=value ]
# Kernel symbol addresses to define as kaddr_{symbol} from /proc/kallsyms (consider CONFIG_KALLSYMS_ALL)
kaddrs:
[ - symbol_to_resolve ]
# Actual eBPF program code to inject in the kernel
code: [ code ]
See llcstat as an example.
- type: [ perf event type code ]
name: [ perf event name code ]
target: [ target eBPF function ]
sample_period: [ sample period ]
sample_frequency: [ sample frequency ]
It's preferred to use sample_frequency
to let kernel pick the sample period
automatically, otherwise you may end up with invalid metrics on overflow.
See Metrics section for more details.
counters:
[ - counter ]
histograms:
[ - histogram ]
See Counters section for more details.
name: <prometheus counter name>
help: <prometheus metric help>
table: <eBPF table name to track>
perf_map: <name for a BPF_PERF_OUTPUT map> # optional
perf_map_flush_duration: <how often should we flush metrics from perf_map: time.Duration> # optional
labels:
[ - label ]
An example of perf_map
can be found here.
See Histograms section for more details.
name: <prometheus histogram name>
help: <prometheus metric help>
table: <eBPF table name to track>
bucket_type: <table bucket type: exp2 or linear>
bucket_multiplier: <table bucket multiplier: float64>
bucket_min: <min bucket value: int>
bucket_max: <max bucket value: int>
labels:
[ - label ]
See Labels section for more details.
name: <prometheus label name>
size: <field size with padding>
decoders:
[ - decoder ]
See Decoders section for more details.
name: <decoder name>
# ... decoder specific configuration
This gauge reports a timeseries for every loaded logical program:
# HELP ebpf_exporter_enabled_programs The set of enabled programs
# TYPE ebpf_exporter_enabled_programs gauge
ebpf_exporter_enabled_programs{name="xfs_reclaim"} 1
This gauge reports information available for every ebpf program:
# HELP ebpf_exporter_ebpf_programs Info about ebpf programs
# TYPE ebpf_exporter_ebpf_programs gauge
ebpf_exporter_ebpf_programs{function="xfs_fs_free_cached_objects_end",program="xfs_reclaim",tag="d5e845dc27b372e4"} 1
ebpf_exporter_ebpf_programs{function="xfs_fs_free_cached_objects_start",program="xfs_reclaim",tag="c2439d02dd0ba000"} 1
ebpf_exporter_ebpf_programs{function="xfs_fs_nr_cached_objects_end",program="xfs_reclaim",tag="598375893f34ef39"} 1
ebpf_exporter_ebpf_programs{function="xfs_fs_nr_cached_objects_start",program="xfs_reclaim",tag="cf30348184f983dd"} 1
Here tag
can be used for tracing and performance analysis with two conditions:
net.core.bpf_jit_kallsyms=1
sysctl is set--kallsyms=/proc/kallsyms
is passed toperf record
Newer kernels allow --kallsyms
to perf top
as well,
in the future it may not be required at all:
MIT