Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rewrite the multi cartesian product iterator #603

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
273 changes: 113 additions & 160 deletions src/adaptors/multi_product.rs
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
#![cfg(feature = "use_alloc")]

use crate::size_hint;
use crate::Itertools;

use alloc::vec::Vec;

Expand All @@ -14,18 +13,34 @@ use alloc::vec::Vec;
/// See [`.multi_cartesian_product()`](crate::Itertools::multi_cartesian_product)
/// for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct MultiProduct<I>(Vec<MultiProductIter<I>>)
pub struct MultiProduct<I>
where
I: Iterator + Clone,
I::Item: Clone;
I::Item: Clone,
{
state: MultiProductState<I::Item>,
iters: Vec<MultiProductIter<I>>,
}

impl<I> std::fmt::Debug for MultiProduct<I>
where
I: Iterator + Clone + std::fmt::Debug,
I::Item: Clone + std::fmt::Debug,
{
debug_fmt_fields!(CoalesceBy, 0);
debug_fmt_fields!(CoalesceBy, iters);
}

/// Stores the current state of the iterator.
#[derive(Clone)]
enum MultiProductState<I> {
/// In the middle of an iteration. The `Vec<I>` is the last value we returned
InProgress(Vec<I>),
/// At the beginning of an iteration. The `Vec<I>` is the next value to be returned.
Restarted(Vec<I>),
/// Iteration has not been started
Unstarted,
}
use MultiProductState::*;

/// Create a new cartesian product iterator over an arbitrary number
/// of iterators of the same type.
Expand All @@ -38,11 +53,12 @@ where
<H::Item as IntoIterator>::IntoIter: Clone,
<H::Item as IntoIterator>::Item: Clone,
{
MultiProduct(
iters
MultiProduct {
state: MultiProductState::Unstarted,
iters: iters
.map(|i| MultiProductIter::new(i.into_iter()))
.collect(),
)
}
}

#[derive(Clone, Debug)]
Expand All @@ -52,114 +68,24 @@ where
I: Iterator + Clone,
I::Item: Clone,
{
cur: Option<I::Item>,
iter: I,
iter_orig: I,
}

/// Holds the current state during an iteration of a `MultiProduct`.
#[derive(Debug)]
enum MultiProductIterState {
StartOfIter,
MidIter { on_first_iter: bool },
}

impl<I> MultiProduct<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
/// Iterates the rightmost iterator, then recursively iterates iterators
/// to the left if necessary.
///
/// Returns true if the iteration succeeded, else false.
fn iterate_last(
multi_iters: &mut [MultiProductIter<I>],
mut state: MultiProductIterState,
) -> bool {
use self::MultiProductIterState::*;

if let Some((last, rest)) = multi_iters.split_last_mut() {
let on_first_iter = match state {
StartOfIter => {
let on_first_iter = !last.in_progress();
state = MidIter { on_first_iter };
on_first_iter
}
MidIter { on_first_iter } => on_first_iter,
};

if !on_first_iter {
last.iterate();
}

if last.in_progress() {
true
} else if MultiProduct::iterate_last(rest, state) {
last.reset();
last.iterate();
// If iterator is None twice consecutively, then iterator is
// empty; whole product is empty.
last.in_progress()
} else {
false
}
} else {
// Reached end of iterator list. On initialisation, return true.
// At end of iteration (final iterator finishes), finish.
match state {
StartOfIter => false,
MidIter { on_first_iter } => on_first_iter,
}
}
}

/// Returns the unwrapped value of the next iteration.
fn curr_iterator(&self) -> Vec<I::Item> {
self.0
.iter()
.map(|multi_iter| multi_iter.cur.clone().unwrap())
.collect()
}

/// Returns true if iteration has started and has not yet finished; false
/// otherwise.
fn in_progress(&self) -> bool {
if let Some(last) = self.0.last() {
last.in_progress()
} else {
false
}
}
}

impl<I> MultiProductIter<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
fn new(iter: I) -> Self {
MultiProductIter {
cur: None,
iter: iter.clone(),
iter_orig: iter,
}
}

/// Iterate the managed iterator.
fn iterate(&mut self) {
self.cur = self.iter.next();
}

/// Reset the managed iterator.
fn reset(&mut self) {
self.iter = self.iter_orig.clone();
}

/// Returns true if the current iterator has been started and has not yet
/// finished; false otherwise.
fn in_progress(&self) -> bool {
self.cur.is_some()
fn next(&mut self) -> Option<I::Item> {
self.iter.next()
}
}

Expand All @@ -171,81 +97,108 @@ where
type Item = Vec<I::Item>;

fn next(&mut self) -> Option<Self::Item> {
if MultiProduct::iterate_last(&mut self.0, MultiProductIterState::StartOfIter) {
Some(self.curr_iterator())
} else {
None
let last = match &mut self.state {
InProgress(v) => v,
Restarted(v) => {
let v = core::mem::replace(v, Vec::new());
self.state = InProgress(v.clone());
return Some(v);
}
Unstarted => {
let next: Option<Vec<_>> = self.iters.iter_mut().map(|i| i.next()).collect();
if let Some(v) = &next {
self.state = InProgress(v.clone());
}
return next;
}
};

// Starting from the last iterator, advance each iterator until we find one that returns a
// value.
for i in (0..self.iters.len()).rev() {
let iter = &mut self.iters[i];
let loc = &mut last[i];
if let Some(val) = iter.next() {
*loc = val;
return Some(last.clone());
} else {
iter.iter = iter.iter_orig.clone();
if let Some(val) = iter.next() {
*loc = val;
} else {
// This case should not really take place; we had an in progress iterator, reset
// it, and called `.next()`, but now its empty. In any case, the product is
// empty now and we should handle things accordingly.
self.state = Unstarted;
return None;
}
}
}

// Reaching here indicates that all the iterators returned none, and so iteration has completed
let v = core::mem::replace(last, Vec::new());
self.state = Restarted(v);
None
}

fn count(self) -> usize {
if self.0.is_empty() {
return 0;
}

if !self.in_progress() {
return self
.0
// `remaining` is the number of remaining iterations before the current iterator is
// exhausted. `per_reset` is the number of total iterations that take place each time the
// current iterator is reset
let (remaining, per_reset) =
self.iters
.into_iter()
.fold(1, |acc, multi_iter| acc * multi_iter.iter.count());
.rev()
.fold((0, 1), |(remaining, per_reset), iter| {
let remaining = remaining + per_reset * iter.iter.count();
let per_reset = per_reset * iter.iter_orig.count();
(remaining, per_reset)
});
if let Restarted(_) | Unstarted = &self.state {
per_reset
} else {
remaining
}

self.0.into_iter().fold(
0,
|acc,
MultiProductIter {
iter,
iter_orig,
cur: _,
}| {
let total_count = iter_orig.count();
let cur_count = iter.count();
acc * total_count + cur_count
},
)
}

fn size_hint(&self) -> (usize, Option<usize>) {
// Not ExactSizeIterator because size may be larger than usize
if self.0.is_empty() {
return (0, Some(0));
}

if !self.in_progress() {
return self.0.iter().fold((1, Some(1)), |acc, multi_iter| {
size_hint::mul(acc, multi_iter.iter.size_hint())
});
let initial = ((0, Some(0)), (1, Some(1)));
// Exact same logic as for `count`
let (remaining, per_reset) =
self.iters
.iter()
.rev()
.fold(initial, |(remaining, per_reset), iter| {
let prod = size_hint::mul(per_reset, iter.iter.size_hint());
let remaining = size_hint::add(remaining, prod);
let per_reset = size_hint::mul(per_reset, iter.iter_orig.size_hint());
(remaining, per_reset)
});
if let Restarted(_) | Unstarted = &self.state {
per_reset
} else {
remaining
}

self.0.iter().fold(
(0, Some(0)),
|acc,
&MultiProductIter {
ref iter,
ref iter_orig,
cur: _,
}| {
let cur_size = iter.size_hint();
let total_size = iter_orig.size_hint();
size_hint::add(size_hint::mul(acc, total_size), cur_size)
},
)
}

fn last(self) -> Option<Self::Item> {
let iter_count = self.0.len();

let lasts: Self::Item = self
.0
.into_iter()
.map(|multi_iter| multi_iter.iter.last())
.while_some()
.collect();

if lasts.len() == iter_count {
Some(lasts)
// The way resetting works makes the first iterator a little bit special
let mut iter = self.iters.into_iter();
if let Some(first) = iter.next() {
let first = if let Restarted(_) | Unstarted = &self.state {
first.iter_orig.last()
} else {
first.iter.last()
};
core::iter::once(first)
.chain(iter.map(|sub| sub.iter_orig.last()))
.collect()
} else {
None
if let Restarted(_) | Unstarted = &self.state {
Some(Vec::new())
} else {
None
}
}
}
}
6 changes: 6 additions & 0 deletions tests/quick.rs
Original file line number Diff line number Diff line change
Expand Up @@ -450,6 +450,12 @@ quickcheck! {
assert_eq!(answer.into_iter().last(), a.multi_cartesian_product().last());
}

fn correct_empty_multi_product() -> () {
let empty = Vec::<std::vec::IntoIter<i32>>::new().into_iter().multi_cartesian_product();
assert!(correct_size_hint(empty.clone()));
itertools::assert_equal(empty, std::iter::once(Vec::new()))
}

#[allow(deprecated)]
fn size_step(a: Iter<i16, Exact>, s: usize) -> bool {
let mut s = s;
Expand Down