Skip to content

Commit

Permalink
Auto merge of #128015 - Nadrieril:two-step-or-expansion, r=<try>
Browse files Browse the repository at this point in the history
match exhaustiveness: Expand or-patterns as a separate step

To compute exhaustiveness, we must expand or-patterns. Previously, we expanded them at the same time that we pushed patterns into the matrix. This made it harder to track pattern reachability, because the or-pattern itself would never show up in the matrix so we had to recover missing information.

This PR changes that: we no longer expand or-patterns as we push them into the matrix. Instead, if we find an or-pattern in the matrix we expand them in a step very much like the specialization we already do. This simplifies a bunch of things, and will greatly simplify the implementation of #127870.

r? `@compiler-errors`
  • Loading branch information
bors committed Jul 20, 2024
2 parents 2e6fc42 + 670723e commit 5f57f25
Show file tree
Hide file tree
Showing 2 changed files with 86 additions and 107 deletions.
13 changes: 12 additions & 1 deletion compiler/rustc_pattern_analysis/src/pat.rs
Original file line number Diff line number Diff line change
Expand Up @@ -190,7 +190,18 @@ impl<'p, Cx: PatCx> PatOrWild<'p, Cx> {
}
}

/// Expand this (possibly-nested) or-pattern into its alternatives.
/// Expand this or-pattern into its alternatives. This only expands one or-pattern; use
/// `flatten_or_pat` to recursively expand nested or-patterns.
pub(crate) fn expand_or_pat(self) -> SmallVec<[Self; 1]> {
match self {
PatOrWild::Pat(pat) if pat.is_or_pat() => {
pat.iter_fields().map(|ipat| PatOrWild::Pat(&ipat.pat)).collect()
}
_ => smallvec![self],
}
}

/// Recursively expand this (possibly-nested) or-pattern into its alternatives.
pub(crate) fn flatten_or_pat(self) -> SmallVec<[Self; 1]> {
match self {
PatOrWild::Pat(pat) if pat.is_or_pat() => pat
Expand Down
180 changes: 74 additions & 106 deletions compiler/rustc_pattern_analysis/src/usefulness.rs
Original file line number Diff line number Diff line change
Expand Up @@ -462,8 +462,9 @@
//! # Or-patterns
//!
//! What we have described so far works well if there are no or-patterns. To handle them, if the
//! first pattern of a row in the matrix is an or-pattern, we expand it by duplicating the rest of
//! the row as necessary. This is handled automatically in [`Matrix`].
//! first pattern of any row in the matrix is an or-pattern, we expand it by duplicating the rest of
//! the row as necessary. For code reuse, this is implemented as "specializing with the `Or`
//! constructor".
//!
//! This makes usefulness tracking subtle, because we also want to compute whether an alternative of
//! an or-pattern is redundant, e.g. in `Some(_) | Some(0)`. We therefore track usefulness of each
Expand Down Expand Up @@ -875,6 +876,11 @@ impl<Cx: PatCx> PlaceInfo<Cx> {
return Ok((smallvec![Constructor::PrivateUninhabited], vec![]));
}

if ctors.clone().any(|c| matches!(c, Constructor::Or)) {
// If any constructor is `Or`, we expand or-patterns.
return Ok((smallvec![Constructor::Or], vec![]));
}

let ctors_for_ty = cx.ctors_for_ty(&self.ty)?;
debug!(?ctors_for_ty);

Expand Down Expand Up @@ -968,10 +974,6 @@ impl<'p, Cx: PatCx> PatStack<'p, Cx> {
PatStack { pats: smallvec![PatOrWild::Pat(pat)], relevant: true }
}

fn is_empty(&self) -> bool {
self.pats.is_empty()
}

fn len(&self) -> usize {
self.pats.len()
}
Expand All @@ -984,10 +986,10 @@ impl<'p, Cx: PatCx> PatStack<'p, Cx> {
self.pats.iter().copied()
}

// Recursively expand the first or-pattern into its subpatterns. Only useful if the pattern is
// an or-pattern. Panics if `self` is empty.
// Expand the first or-pattern into its subpatterns. Only useful if the pattern is an
// or-pattern. Panics if `self` is empty.
fn expand_or_pat(&self) -> impl Iterator<Item = PatStack<'p, Cx>> + Captures<'_> {
self.head().flatten_or_pat().into_iter().map(move |pat| {
self.head().expand_or_pat().into_iter().map(move |pat| {
let mut new = self.clone();
new.pats[0] = pat;
new
Expand Down Expand Up @@ -1057,10 +1059,6 @@ struct MatrixRow<'p, Cx: PatCx> {
}

impl<'p, Cx: PatCx> MatrixRow<'p, Cx> {
fn is_empty(&self) -> bool {
self.pats.is_empty()
}

fn len(&self) -> usize {
self.pats.len()
}
Expand All @@ -1073,12 +1071,14 @@ impl<'p, Cx: PatCx> MatrixRow<'p, Cx> {
self.pats.iter()
}

// Recursively expand the first or-pattern into its subpatterns. Only useful if the pattern is
// an or-pattern. Panics if `self` is empty.
fn expand_or_pat(&self) -> impl Iterator<Item = MatrixRow<'p, Cx>> + Captures<'_> {
self.pats.expand_or_pat().map(|patstack| MatrixRow {
// Expand the first or-pattern (if any) into its subpatterns. Panics if `self` is empty.
fn expand_or_pat(
&self,
parent_row: usize,
) -> impl Iterator<Item = MatrixRow<'p, Cx>> + Captures<'_> {
self.pats.expand_or_pat().map(move |patstack| MatrixRow {
pats: patstack,
parent_row: self.parent_row,
parent_row,
is_under_guard: self.is_under_guard,
useful: false,
intersects: BitSet::new_empty(0), // Initialized in `Matrix::expand_and_push`.
Expand All @@ -1100,7 +1100,7 @@ impl<'p, Cx: PatCx> MatrixRow<'p, Cx> {
parent_row,
is_under_guard: self.is_under_guard,
useful: false,
intersects: BitSet::new_empty(0), // Initialized in `Matrix::expand_and_push`.
intersects: BitSet::new_empty(0), // Initialized in `Matrix::push`.
})
}
}
Expand All @@ -1116,7 +1116,7 @@ impl<'p, Cx: PatCx> fmt::Debug for MatrixRow<'p, Cx> {
/// Invariant: each row must have the same length, and each column must have the same type.
///
/// Invariant: the first column must not contain or-patterns. This is handled by
/// [`Matrix::expand_and_push`].
/// [`Matrix::push`].
///
/// In fact each column corresponds to a place inside the scrutinee of the match. E.g. after
/// specializing `(,)` and `Some` on a pattern of type `(Option<u32>, bool)`, the first column of
Expand All @@ -1136,19 +1136,10 @@ struct Matrix<'p, Cx: PatCx> {
}

impl<'p, Cx: PatCx> Matrix<'p, Cx> {
/// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
/// expands it. Internal method, prefer [`Matrix::new`].
fn expand_and_push(&mut self, mut row: MatrixRow<'p, Cx>) {
if !row.is_empty() && row.head().is_or_pat() {
// Expand nested or-patterns.
for mut new_row in row.expand_or_pat() {
new_row.intersects = BitSet::new_empty(self.rows.len());
self.rows.push(new_row);
}
} else {
row.intersects = BitSet::new_empty(self.rows.len());
self.rows.push(row);
}
/// Pushes a new row to the matrix. Internal method, prefer [`Matrix::new`].
fn push(&mut self, mut row: MatrixRow<'p, Cx>) {
row.intersects = BitSet::new_empty(self.rows.len());
self.rows.push(row);
}

/// Build a new matrix from an iterator of `MatchArm`s.
Expand All @@ -1170,9 +1161,9 @@ impl<'p, Cx: PatCx> Matrix<'p, Cx> {
parent_row: arm_id,
is_under_guard: arm.has_guard,
useful: false,
intersects: BitSet::new_empty(0), // Initialized in `Matrix::expand_and_push`.
intersects: BitSet::new_empty(0), // Initialized in `Matrix::push`.
};
matrix.expand_and_push(v);
matrix.push(v);
}
matrix
}
Expand Down Expand Up @@ -1209,22 +1200,38 @@ impl<'p, Cx: PatCx> Matrix<'p, Cx> {
ctor: &Constructor<Cx>,
ctor_is_relevant: bool,
) -> Result<Matrix<'p, Cx>, Cx::Error> {
let subfield_place_info = self.place_info[0].specialize(pcx.cx, ctor);
let arity = subfield_place_info.len();
let specialized_place_info =
subfield_place_info.chain(self.place_info[1..].iter().cloned()).collect();
let mut matrix = Matrix {
rows: Vec::new(),
place_info: specialized_place_info,
wildcard_row_is_relevant: self.wildcard_row_is_relevant && ctor_is_relevant,
};
for (i, row) in self.rows().enumerate() {
if ctor.is_covered_by(pcx.cx, row.head().ctor())? {
let new_row = row.pop_head_constructor(pcx.cx, ctor, arity, ctor_is_relevant, i)?;
matrix.expand_and_push(new_row);
if matches!(ctor, Constructor::Or) {
// Specializing with `Or` means expanding rows with or-patterns.
let mut matrix = Matrix {
rows: Vec::new(),
place_info: self.place_info.clone(),
wildcard_row_is_relevant: self.wildcard_row_is_relevant,
};
for (i, row) in self.rows().enumerate() {
for new_row in row.expand_or_pat(i) {
matrix.push(new_row);
}
}
Ok(matrix)
} else {
let subfield_place_info = self.place_info[0].specialize(pcx.cx, ctor);
let arity = subfield_place_info.len();
let specialized_place_info =
subfield_place_info.chain(self.place_info[1..].iter().cloned()).collect();
let mut matrix = Matrix {
rows: Vec::new(),
place_info: specialized_place_info,
wildcard_row_is_relevant: self.wildcard_row_is_relevant && ctor_is_relevant,
};
for (i, row) in self.rows().enumerate() {
if ctor.is_covered_by(pcx.cx, row.head().ctor())? {
let new_row =
row.pop_head_constructor(pcx.cx, ctor, arity, ctor_is_relevant, i)?;
matrix.push(new_row);
}
}
Ok(matrix)
}
Ok(matrix)
}

/// Recover row usefulness and intersection information from a processed specialized matrix.
Expand Down Expand Up @@ -1465,7 +1472,9 @@ impl<Cx: PatCx> WitnessMatrix<Cx> {
missing_ctors: &[Constructor<Cx>],
ctor: &Constructor<Cx>,
) {
if self.is_empty() {
// The `Or` constructor indicates that we expanded or-patterns. This doesn't affect
// witnesses.
if self.is_empty() || matches!(ctor, Constructor::Or) {
return;
}
if matches!(ctor, Constructor::Missing) {
Expand Down Expand Up @@ -1715,48 +1724,6 @@ pub enum Usefulness<'p, Cx: PatCx> {
Redundant,
}

/// Report whether this pattern was found useful, and its subpatterns that were not useful if any.
fn collect_pattern_usefulness<'p, Cx: PatCx>(
useful_subpatterns: &FxHashSet<PatId>,
pat: &'p DeconstructedPat<Cx>,
) -> Usefulness<'p, Cx> {
fn pat_is_useful<'p, Cx: PatCx>(
useful_subpatterns: &FxHashSet<PatId>,
pat: &'p DeconstructedPat<Cx>,
) -> bool {
if useful_subpatterns.contains(&pat.uid) {
true
} else if pat.is_or_pat()
&& pat.iter_fields().any(|f| pat_is_useful(useful_subpatterns, &f.pat))
{
// We always expand or patterns in the matrix, so we will never see the actual
// or-pattern (the one with constructor `Or`) in the column. As such, it will not be
// marked as useful itself, only its children will. We recover this information here.
true
} else {
false
}
}

let mut redundant_subpats = Vec::new();
pat.walk(&mut |p| {
if pat_is_useful(useful_subpatterns, p) {
// The pattern is useful, so we recurse to find redundant subpatterns.
true
} else {
// The pattern is redundant.
redundant_subpats.push(p);
false // stop recursing
}
});

if pat_is_useful(useful_subpatterns, pat) {
Usefulness::Useful(redundant_subpats)
} else {
Usefulness::Redundant
}
}

/// The output of checking a match for exhaustiveness and arm usefulness.
pub struct UsefulnessReport<'p, Cx: PatCx> {
/// For each arm of the input, whether that arm is useful after the arms above it.
Expand Down Expand Up @@ -1793,25 +1760,26 @@ pub fn compute_match_usefulness<'p, Cx: PatCx>(
.copied()
.map(|arm| {
debug!(?arm);
let usefulness = collect_pattern_usefulness(&cx.useful_subpatterns, arm.pat);
let usefulness = if cx.useful_subpatterns.contains(&arm.pat.uid) {
let mut redundant_subpats = Vec::new();
arm.pat.walk(&mut |subpat| {
if cx.useful_subpatterns.contains(&subpat.uid) {
true // keep recursing
} else {
redundant_subpats.push(subpat);
false // stop recursing
}
});
Usefulness::Useful(redundant_subpats)
} else {
Usefulness::Redundant
};
debug!(?usefulness);
(arm, usefulness)
})
.collect();

let mut arm_intersections: Vec<_> =
arms.iter().enumerate().map(|(i, _)| BitSet::new_empty(i)).collect();
for row in matrix.rows() {
let arm_id = row.parent_row;
for intersection in row.intersects.iter() {
// Convert the matrix row ids into arm ids (they can differ because we expand or-patterns).
let arm_intersection = matrix.rows[intersection].parent_row;
// Note: self-intersection can happen with or-patterns.
if arm_intersection != arm_id {
arm_intersections[arm_id].insert(arm_intersection);
}
}
}
let arm_intersections: Vec<_> = matrix.rows().map(|row| row.intersects.clone()).collect();

Ok(UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses, arm_intersections })
}

0 comments on commit 5f57f25

Please sign in to comment.