Skip to content

Commit

Permalink
Document reentrancy in *Arena::alloc_from_iter
Browse files Browse the repository at this point in the history
  • Loading branch information
Nadrieril committed Dec 4, 2023
1 parent 7058df2 commit c1774a1
Showing 1 changed file with 25 additions and 16 deletions.
41 changes: 25 additions & 16 deletions compiler/rustc_arena/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -197,23 +197,24 @@ impl<T> TypedArena<T> {
start_ptr
}

/// Allocates the elements of this iterator into a contiguous slice in the `TypedArena`.
///
/// Note: for reasons of reentrancy and panic safety we collect into a `SmallVec<[_; 8]>` before
/// storing the elements in the arena.
#[inline]
pub fn alloc_from_iter<I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
// This implementation is entirely separate to
// `DroplessIterator::alloc_from_iter`, even though conceptually they
// are the same.
// Despite the similarlty with `DroplessArena`, we cannot reuse their fast case. The reason
// is subtle: these arenas are reentrant. In other words, `iter` may very well be holding a
// reference to `self` and adding elements to the arena during iteration.
//
// `DroplessIterator` (in the fast case) writes elements from the
// iterator one at a time into the allocated memory. That's easy
// because the elements don't implement `Drop`. But for `TypedArena`
// they do implement `Drop`, which means that if the iterator panics we
// could end up with some allocated-but-uninitialized elements, which
// will then cause UB in `TypedArena::drop`.
// For this reason, if we pre-allocated any space for the elements of this iterator, we'd
// have to track that some uninitialized elements are followed by some initialized elements,
// else we might accidentally drop uninitialized memory if something panics or if the
// iterator doesn't fill all the length we expected.
//
// Instead we use an approach where any iterator panic will occur
// before the memory is allocated. This function is much less hot than
// `DroplessArena::alloc_from_iter`, so it doesn't need to be
// hyper-optimized.
// So we collect all the elements beforehand, which takes care of reentrancy and panic
// safety. This function is much less hot than `DroplessArena::alloc_from_iter`, so it
// doesn't need to be hyper-optimized.
assert!(mem::size_of::<T>() != 0);

let mut vec: SmallVec<[_; 8]> = iter.into_iter().collect();
Expand Down Expand Up @@ -485,8 +486,9 @@ impl DroplessArena {

/// # Safety
///
/// The caller must ensure that `mem` is valid for writes up to
/// `size_of::<T>() * len`.
/// The caller must ensure that `mem` is valid for writes up to `size_of::<T>() * len`, and that
/// that memory stays allocated and not shared for the lifetime of `self`. This must hold even
/// if `iter.next()` allocates onto `self`.
#[inline]
unsafe fn write_from_iter<T, I: Iterator<Item = T>>(
&self,
Expand Down Expand Up @@ -516,6 +518,8 @@ impl DroplessArena {

#[inline]
pub fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
// Warning: this function is reentrant: `iter` could hold a reference to `&self` and
// allocate additional elements while we're iterating.
let iter = iter.into_iter();
assert!(mem::size_of::<T>() != 0);
assert!(!mem::needs_drop::<T>());
Expand All @@ -524,18 +528,23 @@ impl DroplessArena {

match size_hint {
(min, Some(max)) if min == max => {
// We know the exact number of elements the iterator will produce here
// We know the exact number of elements the iterator expects to produce here.
let len = min;

if len == 0 {
return &mut [];
}

let mem = self.alloc_raw(Layout::array::<T>(len).unwrap()) as *mut T;
// SAFETY: `write_from_iter` doesn't touch `self`. It only touches the slice we just
// reserved. If the iterator panics or doesn't output `len` elements, this will
// leave some unallocated slots in the arena, which is fine because we do not call
// `drop`.
unsafe { self.write_from_iter(iter, len, mem) }
}
(_, _) => {
outline(move || -> &mut [T] {
// Takes care of reentrancy.
let mut vec: SmallVec<[_; 8]> = iter.collect();
if vec.is_empty() {
return &mut [];
Expand Down

0 comments on commit c1774a1

Please sign in to comment.