-
Notifications
You must be signed in to change notification settings - Fork 12.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Fix detection of feature gate use inside of println! #20661
Comments
nominating for 1.0, this allows one to subvert feature gates |
brson
added a commit
to brson/rust
that referenced
this issue
Jan 7, 2015
This partially implements the feature staging described in the [release channel RFC][rc]. It does not yet fully conform to the RFC as written, but does accomplish its goals sufficiently for the 1.0 alpha release. It has three primary user-visible effects: * On the nightly channel, use of unstable APIs generates a warning. * On the beta channel, use of unstable APIs generates a warning. * On the beta channel, use of feature gates generates a warning. Code that does not trigger these warnings is considered 'stable', modulo pre-1.0 bugs. Disabling the warnings for unstable APIs continues to be done in the existing (i.e. old) style, via `#[allow(...)]`, not that specified in the RFC. I deem this marginally acceptable since any code that must do this is not using the stable dialect of Rust. Use of feature gates is itself gated with the new 'unstable_features' lint, on nightly set to 'allow', and on beta 'warn'. The attribute scheme used here corresponds to an older version of the RFC, with the `#[staged_api]` crate attribute toggling the staging behavior of the stability attributes, but the user impact is only in-tree so I'm not concerned about having to make design changes later (and I may ultimately prefer the scheme here after all, with the `#[staged_api]` crate attribute). Since the Rust codebase itself makes use of unstable features the compiler and build system to a midly elaborate dance to allow it to bootstrap while disobeying these lints (which would otherwise be errors because Rust builds with `-D warnings`). This patch includes one significant hack that causes a regression. Because the `format_args!` macro emits calls to unstable APIs it would trigger the lint. I added a hack to the lint to make it not trigger, but this in turn causes arguments to `println!` not to be checked for feature gates. I don't presently understand macro expansion well enough to fix. This is bug rust-lang#20661. Closes rust-lang#16678 [rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
alexcrichton
added a commit
to alexcrichton/rust
that referenced
this issue
Jan 8, 2015
This partially implements the feature staging described in the [release channel RFC][rc]. It does not yet fully conform to the RFC as written, but does accomplish its goals sufficiently for the 1.0 alpha release. It has three primary user-visible effects: * On the nightly channel, use of unstable APIs generates a warning. * On the beta channel, use of unstable APIs generates a warning. * On the beta channel, use of feature gates generates a warning. Code that does not trigger these warnings is considered 'stable', modulo pre-1.0 bugs. Disabling the warnings for unstable APIs continues to be done in the existing (i.e. old) style, via `#[allow(...)]`, not that specified in the RFC. I deem this marginally acceptable since any code that must do this is not using the stable dialect of Rust. Use of feature gates is itself gated with the new 'unstable_features' lint, on nightly set to 'allow', and on beta 'warn'. The attribute scheme used here corresponds to an older version of the RFC, with the `#[staged_api]` crate attribute toggling the staging behavior of the stability attributes, but the user impact is only in-tree so I'm not concerned about having to make design changes later (and I may ultimately prefer the scheme here after all, with the `#[staged_api]` crate attribute). Since the Rust codebase itself makes use of unstable features the compiler and build system do a midly elaborate dance to allow it to bootstrap while disobeying these lints (which would otherwise be errors because Rust builds with `-D warnings`). This patch includes one significant hack that causes a regression. Because the `format_args!` macro emits calls to unstable APIs it would trigger the lint. I added a hack to the lint to make it not trigger, but this in turn causes arguments to `println!` not to be checked for feature gates. I don't presently understand macro expansion well enough to fix. This is bug rust-lang#20661. Closes rust-lang#16678 [rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md Next steps are to disable the existing out-of-tree behavior for stability attributes, and convert the remaining system to be feature-based per the RFC. During the first beta cycle we will set these lints to 'forbid'.
alexcrichton
added a commit
to alexcrichton/rust
that referenced
this issue
Jan 14, 2015
This commit performs a final stabilization pass over the std::fmt module, marking all necessary APIs as stable. One of the more interesting aspects of this module is that it exposes a good deal of its runtime representation to the outside world in order for `format_args!` to be able to construct the format strings. Instead of hacking the compiler to assume that these items are stable, this commit instead lays out a story for the stabilization and evolution of these APIs. There are three primary details used by the `format_args!` macro: 1. `Arguments` - an opaque package of a "compiled format string". This structure is passed around and the `write` function is the source of truth for transforming a compiled format string into a string at runtime. This must be able to be constructed in stable code. 2. `Argument` - an opaque structure representing an argument to a format string. This is *almost* a trait object as it's just a pointer/function pair, but due to the function originating from one of many traits, it's not actually a trait object. Like `Arguments`, this must be constructed from stable code. 3. `fmt::rt` - this module contains the runtime type definitions primarily for the `rt::Argument` structure. Whenever an argument is formatted with nonstandard flags, a corresponding `rt::Argument` is generated describing how the argument is being formatted. This can be used to construct an `Arguments`. The primary interface to `std::fmt` is the `Arguments` structure, and as such this type name is stabilize as-is today. It is expected for libraries to pass around an `Arguments` structure to represent a pending formatted computation. The remaining portions are largely "cruft" which would rather not be stabilized, but due to the stability checks they must be. As a result, almost all pieces have been renamed to represent that they are "version 1" of the formatting representation. The theory is that at a later date if we change the representation of these types we can add new definitions called "version 2" and corresponding constructors for `Arguments`. One of the other remaining large questions about the fmt module were how the pending I/O reform would affect the signatures of methods in the module. Due to [RFC 526][rfc], however, the writers of fmt are now incompatible with the writers of io, so this question has largely been solved. As a result the interfaces are largely stabilized as-is today. [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0526-fmt-text-writer.md Specifically, the following changes were made: * The contents of `fmt::rt` were all moved under `fmt::rt::v1` * `fmt::rt` is stable * `fmt::rt::v1` is stable * `Error` is stable * `Writer` is stable * `Writer::write_str` is stable * `Writer::write_fmt` is stable * `Formatter` is stable * `Argument` has been renamed to `ArgumentV1` and is stable * `ArgumentV1::new` is stable * `ArgumentV1::from_uint` is stable * `Arguments::new_v1` is stable (renamed from `new`) * `Arguments::new_v1_formatted` is stable (renamed from `with_placeholders`) * All formatting traits are now stable, as well as the `fmt` method. * `fmt::write` is stable * `fmt::format` is stable * `Formatter::pad_integral` is stable * `Formatter::pad` is stable * `Formatter::write_str` is stable * `Formatter::write_fmt` is stable * Some assorted top level items which were only used by `format_args!` were removed in favor of static functions on `ArgumentV1` as well. * The formatting-flag-accessing methods remain unstable Within the contents of the `fmt::rt::v1` module, the following actions were taken: * Reexports of all enum variants were removed * All prefixes on enum variants were removed * A few miscellaneous enum variants were renamed * Otherwise all structs, fields, and variants were marked stable. In addition to these actions in the `std::fmt` module, many implementations of `Show` and `String` were stabilized as well. In some other modules: * `ToString` is now stable * `ToString::to_string` is now stable * `Vec` no longer implements `fmt::Writer` (this has moved to `String`) While stabilize the formatting traits, the following change was also made to the `result` module: * `Result::unwrap` now requires `String` instead of `Show` * `Result::unwrap_err` now requires `String` instead of `Show` This is a breaking change due to all of the changes to the `fmt::rt` module, but this likely will not have much impact on existing programs. It is also a breaking change due to the usage of `String` for `unwrap()` on `Result` instead of `Show`. Error types should implement `String` for human readable errors and `Show` for inspecting their representation. Closes rust-lang#20661 [breaking-change]
I've fixed this in #21125 |
alexcrichton
added a commit
to alexcrichton/rust
that referenced
this issue
Jan 30, 2015
This commit performs a final stabilization pass over the std::fmt module, marking all necessary APIs as stable. One of the more interesting aspects of this module is that it exposes a good deal of its runtime representation to the outside world in order for `format_args!` to be able to construct the format strings. Instead of hacking the compiler to assume that these items are stable, this commit instead lays out a story for the stabilization and evolution of these APIs. There are three primary details used by the `format_args!` macro: 1. `Arguments` - an opaque package of a "compiled format string". This structure is passed around and the `write` function is the source of truth for transforming a compiled format string into a string at runtime. This must be able to be constructed in stable code. 2. `Argument` - an opaque structure representing an argument to a format string. This is *almost* a trait object as it's just a pointer/function pair, but due to the function originating from one of many traits, it's not actually a trait object. Like `Arguments`, this must be constructed from stable code. 3. `fmt::rt` - this module contains the runtime type definitions primarily for the `rt::Argument` structure. Whenever an argument is formatted with nonstandard flags, a corresponding `rt::Argument` is generated describing how the argument is being formatted. This can be used to construct an `Arguments`. The primary interface to `std::fmt` is the `Arguments` structure, and as such this type name is stabilize as-is today. It is expected for libraries to pass around an `Arguments` structure to represent a pending formatted computation. The remaining portions are largely "cruft" which would rather not be stabilized, but due to the stability checks they must be. As a result, almost all pieces have been renamed to represent that they are "version 1" of the formatting representation. The theory is that at a later date if we change the representation of these types we can add new definitions called "version 2" and corresponding constructors for `Arguments`. One of the other remaining large questions about the fmt module were how the pending I/O reform would affect the signatures of methods in the module. Due to [RFC 526][rfc], however, the writers of fmt are now incompatible with the writers of io, so this question has largely been solved. As a result the interfaces are largely stabilized as-is today. [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0526-fmt-text-writer.md Specifically, the following changes were made: * The contents of `fmt::rt` were all moved under `fmt::rt::v1` * `fmt::rt` is stable * `fmt::rt::v1` is stable * `Error` is stable * `Writer` is stable * `Writer::write_str` is stable * `Writer::write_fmt` is stable * `Formatter` is stable * `Argument` has been renamed to `ArgumentV1` and is stable * `ArgumentV1::new` is stable * `ArgumentV1::from_uint` is stable * `Arguments::new_v1` is stable (renamed from `new`) * `Arguments::new_v1_formatted` is stable (renamed from `with_placeholders`) * All formatting traits are now stable, as well as the `fmt` method. * `fmt::write` is stable * `fmt::format` is stable * `Formatter::pad_integral` is stable * `Formatter::pad` is stable * `Formatter::write_str` is stable * `Formatter::write_fmt` is stable * Some assorted top level items which were only used by `format_args!` were removed in favor of static functions on `ArgumentV1` as well. * The formatting-flag-accessing methods remain unstable Within the contents of the `fmt::rt::v1` module, the following actions were taken: * Reexports of all enum variants were removed * All prefixes on enum variants were removed * A few miscellaneous enum variants were renamed * Otherwise all structs, fields, and variants were marked stable. In addition to these actions in the `std::fmt` module, many implementations of `Show` and `String` were stabilized as well. In some other modules: * `ToString` is now stable * `ToString::to_string` is now stable * `Vec` no longer implements `fmt::Writer` (this has moved to `String`) This is a breaking change due to all of the changes to the `fmt::rt` module, but this likely will not have much impact on existing programs. Closes rust-lang#20661 [breaking-change]
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I'm going to submit a patch that breaks feature gate detection inside of the arguments to println! in order to get feature staging turned on.
The text was updated successfully, but these errors were encountered: