Skip to content

Commit

Permalink
some use of pathlib.Path in combinat and groups
Browse files Browse the repository at this point in the history
  • Loading branch information
fchapoton committed May 10, 2022
1 parent eb1a786 commit 8a4ae36
Show file tree
Hide file tree
Showing 3 changed files with 53 additions and 50 deletions.
12 changes: 6 additions & 6 deletions src/sage/combinat/cluster_algebra_quiver/mutation_type.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
# https://www.gnu.org/licenses/
# ****************************************************************************

import os
from pathlib import Path
import pickle

from copy import copy
Expand Down Expand Up @@ -1276,16 +1276,16 @@ def load_data(n, user=True):
# we check
# - if the data is stored by the user, and if this is not the case
# - if the data is stored by the optional package install
paths = [SAGE_SHARE]
paths = [Path(SAGE_SHARE)]
if user:
paths.append(DOT_SAGE)
paths.append(Path(DOT_SAGE))
data = {}
for path in paths:
filename = os.path.join(path, 'cluster_algebra_quiver', 'mutation_classes_%s.dig6'%n)
file = path / 'cluster_algebra_quiver' / f'mutation_classes_{n}.dig6'
try:
with open(filename, 'rb') as fobj:
with open(file, 'rb') as fobj:
data_new = pickle.load(fobj)
except Exception:
except (OSError, FileNotFoundError, pickle.UnpicklingError):
# File does not exist, corrupt pickle, wrong Python version...
pass
else:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
# https://www.gnu.org/licenses/
# ***************************************************************************
from __future__ import annotations
import os
from pathlib import Path
import pickle

from sage.structure.sage_object import SageObject
Expand Down Expand Up @@ -2272,9 +2272,9 @@ def _save_data_dig6(n, types='ClassicalExceptional', verbose=False):
data.update(_construct_exceptional_mutation_classes(n))

from sage.env import DOT_SAGE
types_path = os.path.join(DOT_SAGE, 'cluster_algebra_quiver')
types_file = os.path.join(types_path, 'mutation_classes_%s.dig6' % n)
os.makedirs(types_path, exist_ok=True)
types_path = Path(DOT_SAGE) / 'cluster_algebra_quiver'
types_path.mkdir(exist_ok=True)
types_file = types_path / f'mutation_classes_{n}.dig6'
from sage.misc.temporary_file import atomic_write
with atomic_write(types_file, binary=True) as f:
pickle.dump(data, f)
Expand Down
83 changes: 43 additions & 40 deletions src/sage/groups/perm_gps/permgroup_named.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,18 +77,16 @@
permutation groups - the construction is too slow - unless (for
small values or the parameter) they are made using explicit generators.
"""

#*****************************************************************************
# ****************************************************************************
# Copyright (C) 2006 William Stein <wstein@gmail.com>
# David Joyner <wdjoyner@gmail.com>
#
# Distributed under the terms of the GNU General Public License (GPL)
# http://www.gnu.org/licenses/
#*****************************************************************************

import os
# https://www.gnu.org/licenses/
# ****************************************************************************
from pathlib import Path

from sage.rings.all import Integer
from sage.rings.all import Integer
from sage.libs.gap.libgap import libgap
from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF
from sage.arith.all import factor, valuation
Expand Down Expand Up @@ -259,9 +257,9 @@ def __init__(self, domain=None):
from sage.categories.finite_permutation_groups import FinitePermutationGroups
from sage.categories.category import Category

#Note that we skip the call to the superclass initializer in order to
#avoid infinite recursion since SymmetricGroup is called by
#PermutationGroupElement
# Note that we skip the call to the superclass initializer in order to
# avoid infinite recursion since SymmetricGroup is called by
# PermutationGroupElement
cat = Category.join([FinitePermutationGroups(), FiniteWeylGroups().Irreducible()])
super(PermutationGroup_generic, self).__init__(category=cat)

Expand All @@ -270,7 +268,7 @@ def __init__(self, domain=None):
self._domain_to_gap = {key: i+1 for i, key in enumerate(self._domain)}
self._domain_from_gap = {i+1: key for i, key in enumerate(self._domain)}

#Create the generators for the symmetric group
# Create the generators for the symmetric group
gens = [tuple(self._domain)]
if len(self._domain) > 2:
gens.append(tuple(self._domain[:2]))
Expand Down Expand Up @@ -348,7 +346,7 @@ def cartan_type(self):
['A', 0]
"""
from sage.combinat.root_system.cartan_type import CartanType
return CartanType(['A', max(self.degree() - 1,0)])
return CartanType(['A', max(self.degree() - 1, 0)])

def coxeter_matrix(self):
r"""
Expand Down Expand Up @@ -493,8 +491,8 @@ def conjugacy_classes_representatives(self):
from sage.combinat.partition import Partitions_n
from sage.groups.perm_gps.symgp_conjugacy_class import default_representative
n = len(self.domain())
return [ default_representative(la, self)
for la in reversed(Partitions_n(n)) ]
return [default_representative(la, self)
for la in reversed(Partitions_n(n))]

def conjugacy_classes_iterator(self):
"""
Expand Down Expand Up @@ -922,12 +920,12 @@ def __init__(self, n):
a = [tuple(range(1, halfr+1)), tuple(range(halfr+1, r+1))]
# With an odd part, a cycle of length m will give the right order for a
if m > 1:
a.append( tuple(range(r+1, r+m+1)) )
a.append(tuple(range(r + 1, r + m + 1)))

# Representation of x
# Four-cycles that will conjugate the generator a properly
x = [(i+1, (-i)%halfr + halfr + 1, (fourthr+i)%halfr + 1, (-fourthr-i)%halfr + halfr + 1)
for i in range(0, fourthr)]
x = [(i+1, (-i) % halfr + halfr + 1, (fourthr+i) % halfr + 1, (-fourthr-i)%halfr + halfr + 1)
for i in range(0, fourthr)]
# With an odd part, transpositions will conjugate the m-cycle to create inverse
if m > 1:
x += [(r+i+1, r+m-i) for i in range(0, (m-1)//2)]
Expand Down Expand Up @@ -1000,7 +998,7 @@ def __init__(self):
AUTHOR:
-- Bobby Moretti (2006-10)
"""
gens = [(1,2),(3,4)]
gens = [(1, 2), (3, 4)]
PermutationGroup_generic.__init__(self, gens)

def _repr_(self):
Expand Down Expand Up @@ -1047,7 +1045,8 @@ def _repr_(self):
sage: G = groups.permutation.Janko(1); G # optional - gap_packages internet
Janko group J1 of order 175560 as a permutation group
"""
return "Janko group J%s of order %s as a permutation group"%(self._n,self.order())
return "Janko group J%s of order %s as a permutation group" % (self._n, self.order())


class SuzukiSporadicGroup(PermutationGroup_unique):
def __init__(self):
Expand Down Expand Up @@ -1301,8 +1300,6 @@ def __init__(self, factors):
250
sage: TestSuite(G).run() # long time
"""


if not isinstance(factors, list):
msg = "factors of abelian group must be a list, not {}"
raise TypeError(msg.format(factors))
Expand Down Expand Up @@ -1433,9 +1430,9 @@ def __init__(self, n):
if n == 1:
gens = CyclicPermutationGroup(2).gens()
elif n == 2:
gens = ((1,2),(3,4))
gens = ((1, 2), (3, 4))
else:
gen1 = tuple((i, n-i+1) for i in range(1, n//2 +1))
gen1 = tuple((i, n - i + 1) for i in range(1, n // 2 + 1))
gens = tuple([tuple(gen0), gen1])

PermutationGroup_generic.__init__(self, gens)
Expand All @@ -1447,8 +1444,7 @@ def _repr_(self):
sage: G = DihedralGroup(5); G
Dihedral group of order 10 as a permutation group
"""
return "Dihedral group of order %s as a permutation group"%self.order()

return f"Dihedral group of order {self.order()} as a permutation group"


class SplitMetacyclicGroup(PermutationGroup_unique):
Expand Down Expand Up @@ -1578,12 +1574,12 @@ def __init__(self, p, m):
y = [1]
point = 1
for i in range(p**(m-1)-1):
next = (point + 1 + p**(m-2))%(p**(m-1))
next = (point + 1 + p**(m-2)) % (p**(m-1))
if next == 0:
next = p**(m-1)
y.append(next)
point = next
PermutationGroup_unique.__init__(self, gens = [x,y])
PermutationGroup_unique.__init__(self, gens=[x, y])

def _repr_(self):
"""
Expand All @@ -1594,8 +1590,9 @@ def _repr_(self):
"""
return 'The split metacyclic group of order %s ^ %s' % (self.p, self.m)


class SemidihedralGroup(PermutationGroup_unique):
def __init__(self,m):
def __init__(self, m):
r"""
The semidihedral group of order `2^m`.
Expand Down Expand Up @@ -1687,12 +1684,12 @@ def __init__(self,m):
y = [1]
k = 1
for i in range(2**(m-1)-1):
next = (k - 1 + 2**(m-2))%(2**(m-1))
next = (k - 1 + 2**(m-2)) % (2**(m-1))
if next == 0:
next = 2**(m-1)
y.append(next)
k = next
PermutationGroup_unique.__init__(self, gens = [x,y])
PermutationGroup_unique.__init__(self, gens=[x, y])

def _repr_(self):
r"""
Expand Down Expand Up @@ -1753,7 +1750,8 @@ def _repr_(self):
sage: G = MathieuGroup(12); G
Mathieu group of degree 12 and order 95040 as a permutation group
"""
return "Mathieu group of degree %s and order %s as a permutation group"%(self._n,self.order())
return "Mathieu group of degree %s and order %s as a permutation group"%(self._n, self.order())


class TransitiveGroup(PermutationGroup_unique):
def __init__(self, d, n):
Expand Down Expand Up @@ -1832,7 +1830,6 @@ def __init__(self, d, n):
gap_group = libgap.TransitiveGroup(d, n)
PermutationGroup_generic.__init__(self, gap_group=gap_group)


def transitive_number(self):
"""
Return the index of this group in the GAP database, starting at 1
Expand Down Expand Up @@ -1960,7 +1957,8 @@ def __contains__(self, G):
sage: 1 in TransitiveGroups()
False
"""
return isinstance(G,TransitiveGroup)
return isinstance(G, TransitiveGroup)


class TransitiveGroupsOfDegree(CachedRepresentation, Parent):
r"""
Expand Down Expand Up @@ -2380,7 +2378,8 @@ def __contains__(self, G):
sage: 1 in PrimitiveGroups()
False
"""
return isinstance(G,PrimitiveGroup)
return isinstance(G, PrimitiveGroup)


class PrimitiveGroupsOfDegree(CachedRepresentation, Parent):
"""
Expand Down Expand Up @@ -2418,7 +2417,7 @@ def __init__(self, n):
Category of finite enumerated sets
"""
self._degree = n
Parent.__init__(self, category = FiniteEnumeratedSets())
Parent.__init__(self, category=FiniteEnumeratedSets())

def _repr_(self):
"""
Expand Down Expand Up @@ -2756,8 +2755,8 @@ def ramification_module_decomposition_hurwitz_curve(self):

F = self.base_ring()
q = F.order()
libgap.Read(os.path.join(SAGE_EXTCODE, 'gap', 'joyner',
'hurwitz_crv_rr_sp.gap'))
libgap.Read(Path(SAGE_EXTCODE) / 'gap' / 'joyner' /
'hurwitz_crv_rr_sp.gap')
mults = libgap.eval("ram_module_hurwitz({q})".format(q=q))
return mults.sage()

Expand Down Expand Up @@ -2800,11 +2799,12 @@ def ramification_module_decomposition_modular_curve(self):
raise ValueError("degree must be 2")
F = self.base_ring()
q = F.order()
libgap.Read(os.path.join(SAGE_EXTCODE, 'gap', 'joyner',
'modular_crv_rr_sp.gap'))
libgap.Read(Path(SAGE_EXTCODE) / 'gap' / 'joyner' /
'modular_crv_rr_sp.gap')
mults = libgap.eval("ram_module_X({q})".format(q=q))
return mults.sage()


class PSp(PermutationGroup_plg):
def __init__(self, n, q, name='a'):
"""
Expand Down Expand Up @@ -2868,8 +2868,10 @@ def __str__(self):
"""
return "The projective symplectic linear group of degree %s over %s"%(self._n, self.base_ring())


PSP = PSp


class PermutationGroup_pug(PermutationGroup_plg):
def field_of_definition(self):
"""
Expand Down Expand Up @@ -2929,7 +2931,8 @@ def _repr_(self):
The projective special unitary group of degree 2 over Finite Field of size 3
"""
return "The projective special unitary group of degree %s over %s"%(self._n, self.base_ring())
return "The projective special unitary group of degree %s over %s" % (self._n, self.base_ring())


class PGU(PermutationGroup_pug):
def __init__(self, n, q, name='a'):
Expand Down

0 comments on commit 8a4ae36

Please sign in to comment.