Skip to content
This repository has been archived by the owner on Jan 30, 2023. It is now read-only.

Commit

Permalink
Double :'s when docstring is wanted.
Browse files Browse the repository at this point in the history
  • Loading branch information
sverre320 committed Nov 23, 2020
1 parent d115e0c commit 21c5995
Show file tree
Hide file tree
Showing 12 changed files with 178 additions and 178 deletions.
34 changes: 17 additions & 17 deletions src/sage/modules/fp_over_steenrod_algebra/fp_element.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,14 +42,14 @@ def __init__(self, module, coefficients):
Create a module element of a finitely presented graded module over
a connected graded algebra.
INPUT:
INPUT::
- ``module`` -- the parent instance of this module element.
- ``coefficients`` -- a tuple of homogeneous elements of the algebra
over which the module is defined.
OUTPUT: The module element given by the coefficients.
OUTPUT:: The module element given by the coefficients.
.. NOTE:: Never use this constructor explicitly, but rather the parent's
call method, or this class' __call__ method. The reason for this
Expand All @@ -74,7 +74,7 @@ def coefficients(self):
r"""
The coefficients of this module element.
OUTPUT: A tuple of elements of the algebra over which this module is
OUTPUT:: A tuple of elements of the algebra over which this module is
defined.
EXAMPLES::
Expand Down Expand Up @@ -103,7 +103,7 @@ def degree(self):
r"""
The degree of this element.
OUTPUT: The integer degree of this element, or ``None`` if this is the
OUTPUT:: The integer degree of this element, or ``None`` if this is the
zero element.
EXAMPLES::
Expand Down Expand Up @@ -161,11 +161,11 @@ def _lmul_(self, a):
r"""
Act by left multiplication on this element by ``a``.
INPUT:
INPUT::
- ``a`` -- an element of the algebra this module is defined over.
OUTPUT: the module element `a\cdot x` where `x` is this module element.
OUTPUT:: the module element `a\cdot x` where `x` is this module element.
EXAMPLES::
Expand Down Expand Up @@ -226,12 +226,12 @@ def _add_(self, other):
Implementation of this function allows Sage to make sense of the +
operator for instances of this class.
INPUT:
INPUT::
- ``other`` -- another element of this element's module. Only elements
of the same degree are allowed to be added together.
OUTPUT: the module sum of this element and the given element ``other``.
OUTPUT:: the module sum of this element and the given element ``other``.
EXAMPLES::
Expand All @@ -248,7 +248,7 @@ def _add_(self, other):
sage: x + (-x) == 0
True
TESTS::
TESTS:
sage: x = M.an_element(4)
sage: y = M.an_element(5)
Expand All @@ -275,7 +275,7 @@ def _richcmp_(self, other, op):
Implementation of this function allows Sage to make sense of the ==
operator for instances of this class.
INPUT:
INPUT::
- ``other`` -- An instance of this class.
Expand All @@ -284,7 +284,7 @@ def _richcmp_(self, other, op):
elements are equal. If ``op`` == 3, then return ``True `` if and
only if the elements are not equal. Otherwise, return ``False``.
OUTPUT: A Boolean.
OUTPUT:: A boolean.
EXAMPLES::
Expand All @@ -301,7 +301,7 @@ def _richcmp_(self, other, op):
sage: A2.Sq(1)*x == y
True
TESTS::
TESTS:
sage: N = FP_Module([0], A2)
sage: x._richcmp_(M.an_element(4), 2) # Elements of different degrees aren't equal
Expand Down Expand Up @@ -348,7 +348,7 @@ def vector_presentation(self):
When the element is zero, it has no well defined degree, and this
function returns ``None``.
OUTPUT: A vector of elements in the ground field of the algebra for
OUTPUT:: A vector of elements in the ground field of the algebra for
this module when this element is non-zero. Otherwise, the value
``None``.
Expand Down Expand Up @@ -386,7 +386,7 @@ def vector_presentation(self):
sage: x == x_
True
TESTS::
TESTS:
sage: M.zero().vector_presentation() is None
True
Expand All @@ -410,7 +410,7 @@ def _nonzero_(self):
r"""
Determine if this element is non-zero.
OUTPUT: The boolean value ``True`` if this element is non-zero, and ``False``
OUTPUT:: The boolean value ``True`` if this element is non-zero, and ``False``
otherwise.
EXAMPLES::
Expand Down Expand Up @@ -439,7 +439,7 @@ def normalize(self):
r"""
A normalized form of ``self``.
OUTPUT: An instance of this element class representing the same
OUTPUT:: An instance of this element class representing the same
module element as this element.
EXAMPLES::
Expand Down Expand Up @@ -473,7 +473,7 @@ def __hash__(self):
r"""
A hash value representing this element.
TESTS::
TESTS:
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: M = FP_Module([0,1], SteenrodAlgebra(2), [[Sq(4),Sq(3)]])
Expand Down
20 changes: 10 additions & 10 deletions src/sage/modules/fp_over_steenrod_algebra/fp_homspace.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
.. NOTE:: This class is intended for private use by
:class:`sage.modules.fp_over_steenrod_algebra.fpa_homspace.FPA_ModuleHomspace`.
TESTS::
TESTS:
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: from sage.misc.sage_unittest import TestSuite
Expand Down Expand Up @@ -89,7 +89,7 @@ def is_FP_ModuleHomspace(x):
r"""
Check if the given object is of type FP_ModuleHomspace.
OUTPUT: A boolean which is True if ``x`` is of type FP_ModuleHomspace.
OUTPUT:: A boolean which is True if ``x`` is of type FP_ModuleHomspace.
EXAMPLES::
Expand Down Expand Up @@ -124,11 +124,11 @@ def _element_constructor_(self, values):
This function is not part of the public API, but is used by :meth:Hom
method to create morphisms.
INPUT:
INPUT::
- ``values`` -- An iterable of FP_Elements of the codomain.
OUTPUT: A module homomorphism in this homspace sending the generators
OUTPUT:: A module homomorphism in this homspace sending the generators
of the domain module to the given values.
EXAMPLES::
Expand Down Expand Up @@ -171,11 +171,11 @@ def an_element(self, n=0):
r"""
Create a homomorphism belonging to this homset.
INPUT:
INPUT::
- ``n`` -- an integer degree. (optional, default: 0)
OUTPUT: A module homomorphism of degree ``n``.
OUTPUT:: A module homomorphism of degree ``n``.
EXAMPLES::
Expand Down Expand Up @@ -214,11 +214,11 @@ def basis_elements(self, n):
r"""
Compute a basis for the vectorspace of degree ``n`` morphisms.
INPUT:
INPUT::
- ``n`` -- an integer degree.
OUTPUT: A basis for the set of all module homomorphisms of degree ``n``.
OUTPUT:: A basis for the set of all module homomorphisms of degree ``n``.
EXAMPLES::
Expand Down Expand Up @@ -304,13 +304,13 @@ def _basis_elements(self, n, basis):
This function is private and used by :meth:`basis_elements` and
:meth:`an_element`.
INPUT:
INPUT::
- ``n`` -- an integer degree.
- ``basis`` -- boolean to decide if a basis should be returned, or just
a single homomorphism.
OUTPUT: A basis for the set of all module homomorphisms of degree ``n``
OUTPUT:: A basis for the set of all module homomorphisms of degree ``n``
if ``basis`` is True. Otherwise a single element is returned. In the
latter case, this homomorphism is non-trivial if the vectorspace of all
homomorphisms is non-trivial.
Expand Down
Loading

0 comments on commit 21c5995

Please sign in to comment.