Skip to content
This repository has been archived by the owner on Jan 30, 2023. It is now read-only.

Commit

Permalink
Merge branch 'public/rings/lazy_series_revert-34383' of trac.sagemath…
Browse files Browse the repository at this point in the history
….org:sage into t/34413/implement_derivatives_of_lazy_series
  • Loading branch information
mantepse committed Aug 30, 2022
2 parents ee35418 + dafdcb4 commit 9124987
Show file tree
Hide file tree
Showing 2 changed files with 6 additions and 7 deletions.
3 changes: 1 addition & 2 deletions src/sage/combinat/partition.py
Original file line number Diff line number Diff line change
Expand Up @@ -1066,8 +1066,7 @@ def stretch(self, k):
sage: p = Partition([4,2,2,1,1])
sage: p.stretch(3)
[12,6,6,3,3]
[12, 6, 6, 3, 3]
"""
return _Partitions([k * p for p in self])

Expand Down
10 changes: 5 additions & 5 deletions src/sage/data_structures/stream.py
Original file line number Diff line number Diff line change
Expand Up @@ -1837,7 +1837,7 @@ def compute_product(self, n, la):
sage: f = Stream_zero(True) # irrelevant for this test
sage: g = Stream_exact([s[2], s[3]], False, 0, 4, 2)
sage: h = Stream_plethysm(f, g, p)
sage: A = h._compute_product(7, Partition([2, 1])); A
sage: A = h.compute_product(7, Partition([2, 1])); A
1/12*p[2, 2, 1, 1, 1] + 1/4*p[2, 2, 2, 1] + 1/6*p[3, 2, 2]
+ 1/12*p[4, 1, 1, 1] + 1/4*p[4, 2, 1] + 1/6*p[4, 3]
sage: A == p[2, 1](s[2] + s[3]).homogeneous_component(7)
Expand All @@ -1847,7 +1847,7 @@ def compute_product(self, n, la):
sage: f = Stream_zero(True) # irrelevant for this test
sage: g = Stream_function(lambda n: sum(tensor([p[k], p[n-k]]) for k in range(n+1)), p2, True, 1)
sage: h = Stream_plethysm(f, g, p2)
sage: A = h._compute_product(7, Partition([2, 1]))
sage: A = h.compute_product(7, Partition([2, 1]))
sage: B = p[2, 1](sum(g[n] for n in range(7)))
sage: B = p2.element_class(p2, {m: c for m, c in B if sum(mu.size() for mu in m) == 7})
sage: A == B
Expand All @@ -1857,7 +1857,7 @@ def compute_product(self, n, la):
sage: g = Stream_function(lambda n: s[n], p, True, 0)
sage: h = Stream_plethysm(f, g, p)
sage: B = p[2, 2, 1](sum(s[i] for i in range(7)))
sage: all(h._compute_product(k, Partition([2, 2, 1])) == B.restrict_degree(k) for k in range(7))
sage: all(h.compute_product(k, Partition([2, 2, 1])) == B.restrict_degree(k) for k in range(7))
True
"""
# This is the approximate order of the result
Expand Down Expand Up @@ -1897,15 +1897,15 @@ def stretched_power_restrict_degree(self, i, m, d):
sage: f = Stream_zero(False) # irrelevant for this test
sage: g = Stream_exact([s[2], s[3]], False, 0, 4, 2)
sage: h = Stream_plethysm(f, g, p)
sage: A = h._stretched_power_restrict_degree(2, 3, 6)
sage: A = h.stretched_power_restrict_degree(2, 3, 6)
sage: A == p[2,2,2](s[2] + s[3]).homogeneous_component(12)
True
sage: p2 = tensor([p, p])
sage: f = Stream_zero(True) # irrelevant for this test
sage: g = Stream_function(lambda n: sum(tensor([p[k], p[n-k]]) for k in range(n+1)), p2, True, 1)
sage: h = Stream_plethysm(f, g, p2)
sage: A = h._stretched_power_restrict_degree(2, 3, 6)
sage: A = h.stretched_power_restrict_degree(2, 3, 6)
sage: B = p[2,2,2](sum(g[n] for n in range(7)))
sage: B = p2.element_class(p2, {m: c for m, c in B if sum(mu.size() for mu in m) == 12})
sage: A == B
Expand Down

0 comments on commit 9124987

Please sign in to comment.