Skip to content
This repository has been archived by the owner on Jan 30, 2023. It is now read-only.

Commit

Permalink
added long time flags
Browse files Browse the repository at this point in the history
  • Loading branch information
Jonathan Kliem committed Jun 19, 2020
1 parent 206dbb7 commit c6ea1ec
Showing 1 changed file with 8 additions and 8 deletions.
16 changes: 8 additions & 8 deletions src/sage/geometry/polyhedron/library.py
Original file line number Diff line number Diff line change
Expand Up @@ -2256,7 +2256,7 @@ def six_hundred_cell(self, exact=False, backend=None):
TESTS::
sage: p600 = polytopes.six_hundred_cell(exact=True, backend='normaliz') # optional - pynormaliz
sage: len(list(p600.bounded_edges())) # optional - pynormaliz
sage: len(list(p600.bounded_edges())) # optional - pynormaliz, long time
720
"""
if exact:
Expand Down Expand Up @@ -2395,7 +2395,7 @@ def Gosset_3_21(self, backend=None):
TESTS::
sage: G321 = polytopes.Gosset_3_21(backend='normaliz') # optional - pynormaliz
sage: TestSuite(G321).run() # optional - pynormaliz
sage: TestSuite(G321).run() # optional - pynormaliz, long time
"""
from itertools import combinations
verts = []
Expand Down Expand Up @@ -2625,8 +2625,8 @@ def generalized_permutahedron(self, coxeter_type, point=None, exact=True, regula
A vertex at (0.500000000000000?, 0.866025403784439?))
sage: perm_a2_reg.is_inscribed()
True
sage: perm_a3_reg = polytopes.generalized_permutahedron(['A',3],regular=True)
sage: perm_a3_reg.is_inscribed()
sage: perm_a3_reg = polytopes.generalized_permutahedron(['A',3],regular=True) # long time
sage: perm_a3_reg.is_inscribed() # long time
True
The same is possible with vertices in ``RDF``::
Expand All @@ -2651,7 +2651,7 @@ def generalized_permutahedron(self, coxeter_type, point=None, exact=True, regula
It works also with types with non-rational coordinates::
sage: perm_b3 = polytopes.generalized_permutahedron(['B',3]); perm_b3
sage: perm_b3 = polytopes.generalized_permutahedron(['B',3]); perm_b3 # long time
A 3-dimensional polyhedron in (Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095?)^3 defined as the convex hull of 48 vertices
sage: perm_b3_reg = polytopes.generalized_permutahedron(['B',3],regular=True); perm_b3_reg # not tested - long time (12sec on 64 bits).
Expand All @@ -2669,8 +2669,8 @@ def generalized_permutahedron(self, coxeter_type, point=None, exact=True, regula
sage: perm_h3 = polytopes.generalized_permutahedron(['H',3],backend='normaliz') # optional - pynormaliz
sage: perm_h3 # optional - pynormaliz
A 3-dimensional polyhedron in (Number Field in a with defining polynomial x^2 - 5 with a = 2.236067977499790?)^3 defined as the convex hull of 120 vertices
sage: perm_f4 = polytopes.generalized_permutahedron(['F',4],backend='normaliz') # optional - pynormaliz
sage: perm_f4 # optional - pynormaliz
sage: perm_f4 = polytopes.generalized_permutahedron(['F',4],backend='normaliz') # optional - pynormaliz, long time
sage: perm_f4 # optional - pynormaliz, long time
A 4-dimensional polyhedron in (Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095?)^4 defined as the convex hull of 1152 vertices
.. SEEALSO::
Expand Down Expand Up @@ -3004,7 +3004,7 @@ def one_hundred_twenty_cell(self, exact=True, backend=None, construction='coxete
TESTS::
sage: TestSuite(P).run() # optional - pynormaliz
sage: TestSuite(P).run() # optional - pynormaliz, long time
"""
if construction == 'coxeter':
if not exact:
Expand Down

0 comments on commit c6ea1ec

Please sign in to comment.