Skip to content
This repository has been archived by the owner on Jan 30, 2023. It is now read-only.

Commit

Permalink
24497: doctest fixes
Browse files Browse the repository at this point in the history
  • Loading branch information
rwst committed Jan 15, 2018
1 parent 907aff6 commit d085587
Show file tree
Hide file tree
Showing 3 changed files with 5 additions and 5 deletions.
2 changes: 1 addition & 1 deletion src/sage/functions/transcendental.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ def __init__(self):
sage: s = SR('s')
sage: zeta(s).series(s==1, 2)
1*(s - 1)^(-1) + (euler_gamma) + (-stieltjes(1))*(s - 1) + Order((s - 1)^2)
1*(s - 1)^(-1) + euler_gamma + (-stieltjes(1))*(s - 1) + Order((s - 1)^2)
Generally, the Stieltjes constants occur in the Laurent
expansion of `\zeta`-type singularities::
Expand Down
4 changes: 2 additions & 2 deletions src/sage/modular/modform_hecketriangle/graded_ring_element.py
Original file line number Diff line number Diff line change
Expand Up @@ -1944,8 +1944,8 @@ def evaluate(self, tau, prec = None, num_prec = None, check=False):
2.525...e-10 - 3.884...e-6*I
sage: f_i(i)
0
sage: f_i(i + 1e-1000)
-6.084...e-14 - 4.101...e-1000*I
sage: f_i(i + 1e-1000) # rel tol 5e-2
-6.08402217494586e-14 - 4.10147008296517e-1000*I
sage: f_inf(infinity)
0
Expand Down
4 changes: 2 additions & 2 deletions src/sage/symbolic/series.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ TESTS:
Check that :trac:`20088` is fixed::
sage: ((1+x).series(x)^pi).series(x,3)
1 + (pi)*x + (-1/2*pi + 1/2*pi^2)*x^2 + Order(x^3)
1 + pi*x + (-1/2*pi + 1/2*pi^2)*x^2 + Order(x^3)
Check that :trac:`14878` is fixed, this should take only microseconds::
Expand Down Expand Up @@ -281,7 +281,7 @@ cdef class SymbolicSeries(Expression):
EXAMPLES::
sage: ex=(gamma(1-x)).series(x,3); ex
1 + (euler_gamma)*x + (1/2*euler_gamma^2 + 1/12*pi^2)*x^2 + Order(x^3)
1 + euler_gamma*x + (1/2*euler_gamma^2 + 1/12*pi^2)*x^2 + Order(x^3)
sage: g=ex.power_series(SR); g
1 + euler_gamma*x + (1/2*euler_gamma^2 + 1/12*pi^2)*x^2 + O(x^3)
sage: g.parent()
Expand Down

0 comments on commit d085587

Please sign in to comment.