Skip to content

Commit

Permalink
fix the bug in the creation of pp groups to avoid hang (PaddlePaddle#…
Browse files Browse the repository at this point in the history
…32890)

* update, test=develop
  • Loading branch information
lilong12 committed Jun 9, 2021
1 parent d496722 commit f8df061
Show file tree
Hide file tree
Showing 5 changed files with 188 additions and 4 deletions.
15 changes: 12 additions & 3 deletions python/paddle/distributed/fleet/meta_optimizers/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,9 +77,12 @@ def _init_communicator(self,
wait_port,
global_ring_id=None,
sync=True):
nranks = len(endpoints)
other_endpoints = endpoints[:]
other_endpoints.remove(current_endpoint)
# if current_endpoint is None, it means just for sync,
# no group is created.
if current_endpoint:
nranks = len(endpoints)
other_endpoints = endpoints[:]
other_endpoints.remove(current_endpoint)

if rank == 0 and wait_port:
wait_server_ready(other_endpoints)
Expand Down Expand Up @@ -117,6 +120,12 @@ def _add_sync_by_allreduce(block):
attrs={OP_ROLE_KEY: OpRole.Forward})

block = program.global_block()
if current_endpoint is None:
assert endpoints is None
assert sync
_add_sync_by_allreduce(block)
return

if core.is_compiled_with_cuda():
comm_id_var = block.create_var(
name=unique_name.generate('nccl_id'),
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -138,6 +138,9 @@ def _init_process_group(self, pipeline_pair, pipeline_ring_map):
first_node = pair[0] + start_index
second_node = pair[1] + start_index
if self.rank != first_node and self.rank != second_node:
collective_helper._init_communicator(
self.startup_program, None, None, None, None, False,
self.global_ring_id, True)
continue
pipeline_endpoints = [
self.endpoints[first_node], self.endpoints[second_node]
Expand Down
6 changes: 5 additions & 1 deletion python/paddle/fluid/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -3856,6 +3856,7 @@ def _insert_allreduce_op(self, op_idx, block):
'out_dtype': out_var.dtype,
self._op_role_key: self._op_role.Optimize
})
offset += 1
return offset

def _create_vars(self, block, ori_block):
Expand Down Expand Up @@ -4364,12 +4365,15 @@ def _insert_send_recv(cur_id, prev_id):
'ring_id': ring_id
})
extra_index_info['index'] += 1
var_shape = list(var.shape)
var_shape[0] = self.micro_batch_size if var_shape[
0] < 0 else var_shape[0]
block._insert_op_without_sync(
index=index + extra_index_info['index'],
type='recv_v2',
outputs={'Out': [var]},
attrs={
'out_shape': var.shape,
'out_shape': var_shape,
'dtype': var.dtype,
self._op_device_key: cur_dev,
self._op_role_key: op_role,
Expand Down
159 changes: 159 additions & 0 deletions python/paddle/fluid/tests/unittests/pipeline_mnist_multi_device.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import argparse
import time
import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
from functools import reduce
from test_dist_base import TestDistRunnerBase, runtime_main
import paddle.distributed.fleet as fleet

paddle.enable_static()

DTYPE = "float32"
paddle.dataset.mnist.fetch()

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


def cnn_model(data):
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=data,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu",
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
value=0.01)))
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu",
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
value=0.01)))

SIZE = 10
input_shape = conv_pool_2.shape
param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

with fluid.device_guard("gpu:1"):
predict = fluid.layers.fc(
input=conv_pool_2,
size=SIZE,
act="softmax",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01)))
# To cover @RENAMED@GRADIENT
predict2 = fluid.layers.fc(
input=conv_pool_1,
size=SIZE,
act="softmax",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01)))
predict += predict2
return predict


class TestDistMnist2x2(TestDistRunnerBase):
def get_model(self, batch_size=2, use_dgc=False, dist_strategy=None):
# Input data
with fluid.device_guard("gpu:0"):
images = fluid.layers.data(
name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')

if dist_strategy:
data_loader = fluid.io.DataLoader.from_generator(
feed_list=[images, label],
capacity=64,
use_double_buffer=False,
iterable=False)
# Train program
predict = cnn_model(images)
with fluid.device_guard("gpu:1"):
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)

# Evaluator
with fluid.device_guard("gpu:1"):
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size_tensor)

inference_program = fluid.default_main_program().clone()
base_lr = self.lr
passes = [30, 60, 80, 90]
steps_per_pass = 10
bd = [steps_per_pass * p for p in passes]
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
lr_val = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
opt = fluid.optimizer.Momentum(
learning_rate=lr_val,
momentum=0.9,
grad_clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0))

acc_steps = 2 # accumulated steps for pipeline
if dist_strategy:
# Reader
train_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size)
fleet.init(is_collective=True)
strategy = fleet.DistributedStrategy()
strategy.pipeline = True
strategy.amp = True
strategy.pipeline_configs = {
'micro_batch_size': batch_size,
'schedule_mode': 'F-then-B',
'accumulate_steps': acc_steps
}
dist_opt = fleet.distributed_optimizer(
optimizer=opt, strategy=strategy)
dist_opt.minimize(avg_cost)
else:
opt.minimize(avg_cost)
# Reader
train_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size * acc_steps)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size * acc_steps)

if dist_strategy:
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader
else:
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict


if __name__ == "__main__":
runtime_main(TestDistMnist2x2)
9 changes: 9 additions & 0 deletions python/paddle/fluid/tests/unittests/test_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,15 @@ def test_dist_train(self):
check_error_log=True,
log_name=flag_name)

def test_dist_train_multi_device(self):
import paddle.fluid as fluid
if fluid.core.is_compiled_with_cuda():
self.check_with_place(
"pipeline_mnist_multi_device.py",
check_error_log=True,
delta=1e0,
log_name=flag_name)

def test_dist_train_one_device(self):
import paddle.fluid as fluid
if fluid.core.is_compiled_with_cuda():
Expand Down

0 comments on commit f8df061

Please sign in to comment.