Skip to content

saramcallister/Kangaroo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Kangaroo

Welcome! This repository holds all of the simulation and graphing code for "Kangaroo: Caching Billions of Tiny Object on Flash", which is to appear at SOSP 2021. See the Kangaroo Flash Experiments to find code links and detailed run instructions for the on-flash experiment code, which is implemented as another flash cache in Facebook's CacheLib engine.

Simulation Code

Build Instructions

Install SCons (https://scons.org/). Recommended install using python:

pip install SCons
cd simulator
scons

The executable is simulator/bin/cache which can be run with individual configurations.

Generate Simulator Configurations

The easiest way to generate workloads is using the genConfigs.py script in run-scripts.

cd run-scripts
./genConfigs.py -h # to see all the options

For example, if you want to create a Kangaroo simulation experiment using different log percentages (1%, 3%, 5%, 7%, 9% of flash) and pre-log random admission percentages (admit 80%, 90%, and 100%) run with a Zipf trace (alpha=0.9) you could run:

./genConfigs.py kangaroo-zipf --log 1 3 5 7 9 --rrip 3 --zipf 0.9 --readmission 1 --mem-size-MB 5 --flash-size-MB 20 --rotating-kb 256 --multiple-admission-policies --pre-log-random .8 .9 1 --threshold 2

For SA, remove the --log, --rrip, --threshold, --multiple-admission-policies, readmission, and --rotating-kb parameters and change --pre-log-random to --pre-set-random for a random admission policy.

./genConfigs.py sa-zipf --zipf 0.9 --mem-size-MB 5 --flash-size-MB 20 --pre-set-random .8 .9 1

For LS, use the --no-sets parameter and remove the --threshold, --rrip, --multiple-admission-policies flags.

./genConfigs.py ls-zipf --zipf 0.9 --mem-size-MB 5 --flash-size-MB 20 --pre-log-random .8 .9 1 --no-sets

The configs will automatically be generated in local run-scripts/configs directory with outputs to be written to run-scripts/output.

Note: Python 3 is required to run python code.

Run Simulator

To run the generated configurations, use run-scripts/runLocal.py.

./runLocal.py configs --jobs 3

Each simulator instance is single threaded. Multiple configs can be run at once using the jobs parameter.

Adding Parsing Code

One of the most common code additions is adding parsers for new trace formats. To add a new parser,

  1. Write a parser that inherits from Parser (in simulator/parsers/parser.hpp). Examples can be found in the parsers directory.
  2. Add the parser as an option in simulator/parsers/parser.cpp.
  3. Add parser to the configuration generator if desired (run-scripts/genConfigs.py).

Kangaroo Flash Experiments

Kangaroo's full on-flash implementation and the Log-structured code evaluated in the paper exist at https://github.com/saramcallister/CacheLib-1

To look at the Kangaroo code:

git clone git@github.com:saramcallister/CacheLib-1.git
cd CacheLib-1

git checkout artifact-eval-kangaroo-upstream # for Kangaroo and SA code
git checkout artifact-eval-log-only-upstream # for LS code, need to be on this branch to run this comparison 

The Kangaroo flash cache code is mostly contained in cachelib/navy/kangaroo. You can also look at the pull request to the main CacheLib repository.

To build the code:

./contrib/build.sh -j -v -d

To run the flash experiments, you will need a flash drive formatted as a raw block device. The Cachelib engine has support for reading device-level write amplification, but it might not support your specific device. You can still get application-level write amplification numbers.

To run an experiment, create an appropriate json config (examples below) and run:

sudo ./opt/cachelib/bin/cachebench --json-test-config {CONFIG} --progress 300 --progress_stats_file {OUTFILE}

This will write experiment statistics from CacheLib to the specified output file every 300 seconds.

Sample configuartions are at cachelib/cachebench/test_configs/kangaroo within the CacheLib-Kangaroo fork. In the directory, there is also a text file that explains important parameters (more general parameters are available at https://cachelib.org/). The appropriate configurations for Kangaroo and LS are only in the correct branch.

Graphing

All the graphing scripts are in the graph-scripts directory. With the exception of miss_ratio_kangaroo_params.py which can create the Kangaroo breakdown graphs and the headline results graph, these scriptsare run using ./{SCRIPT} {WORKLOAD} output-files. For miss_ratio_kangaroo_params.py, the output files or results are specified in the script.

To change the graphing parameters (scaling, dram limits, device write amplification, etc) or add parameters for a new trace, you can modify or add graph-scripts/paramaters.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published