-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
TST: new test case for bad element thickness/width ratio
- Loading branch information
1 parent
16dcd9a
commit 1e1f05f
Showing
1 changed file
with
161 additions
and
0 deletions.
There are no files selected for viewing
161 changes: 161 additions & 0 deletions
161
tests/test_quad4_linear_buckling_plate_rotated_thick_elements.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
import sys | ||
sys.path.append('..') | ||
|
||
import numpy as np | ||
from numpy import isclose | ||
from scipy.sparse.linalg import eigsh, spsolve, cg | ||
from scipy.sparse import coo_matrix | ||
|
||
from pyfe3d.shellprop_utils import isotropic_plate | ||
from pyfe3d import Quad4, Quad4Data, Quad4Probe, INT, DOUBLE, DOF | ||
|
||
|
||
def test_linear_buckling_plate(plot=False, mode=0): | ||
# | ||
thetas = np.deg2rad(np.linspace(-np.pi, np.pi, 5)) | ||
|
||
nx = 13 | ||
ny = 13 | ||
|
||
a = 0.5 | ||
b = 0.5 | ||
h = 0.05 # m | ||
|
||
E = 203.e9 # Pa | ||
nu = 0.33 | ||
prop = isotropic_plate(E=E, nu=nu, thickness=h, calc_scf=True) | ||
print(prop.scf_k13) | ||
print(prop.scf_k23) | ||
|
||
Nxx = -1. | ||
|
||
data = Quad4Data() | ||
probe = Quad4Probe() | ||
|
||
xtmp = np.linspace(0, a, nx) | ||
ytmp = np.linspace(0, b, ny) | ||
xmesh, ymesh = np.meshgrid(xtmp, ytmp) | ||
ncoords_local = np.vstack((xmesh.T.flatten(), ymesh.T.flatten(), np.zeros_like(ymesh.T.flatten()))).T | ||
|
||
x_local = ncoords_local[:, 0] | ||
y_local = ncoords_local[:, 1] | ||
z_local = ncoords_local[:, 2] | ||
|
||
for pitch in thetas: | ||
for yaw in thetas: | ||
print('pitch, yaw', pitch, yaw) | ||
|
||
x = np.cos(yaw)*np.cos(pitch)*x_local - np.sin(yaw)*y_local + np.cos(yaw)*np.sin(pitch)*z_local | ||
y = np.sin(yaw)*np.cos(pitch)*x_local + np.cos(yaw)*y_local + np.sin(yaw)*np.sin(pitch)*z_local | ||
z = -np.sin(pitch)*x_local + np.cos(pitch)*z_local | ||
|
||
ncoords = np.vstack((x, y, z)).T | ||
ncoords_flatten = ncoords.flatten() | ||
|
||
nids = 1 + np.arange(ncoords.shape[0]) | ||
nid_pos = dict(zip(nids, np.arange(len(nids)))) | ||
nids_mesh = nids.reshape(nx, ny) | ||
n1s = nids_mesh[:-1, :-1].flatten() | ||
n2s = nids_mesh[1:, :-1].flatten() | ||
n3s = nids_mesh[1:, 1:].flatten() | ||
n4s = nids_mesh[:-1, 1:].flatten() | ||
|
||
num_elements = len(n1s) | ||
print('num_elements', num_elements) | ||
|
||
KC0r = np.zeros(data.KC0_SPARSE_SIZE*num_elements, dtype=INT) | ||
KC0c = np.zeros(data.KC0_SPARSE_SIZE*num_elements, dtype=INT) | ||
KC0v = np.zeros(data.KC0_SPARSE_SIZE*num_elements, dtype=DOUBLE) | ||
KGr = np.zeros(data.KG_SPARSE_SIZE*num_elements, dtype=INT) | ||
KGc = np.zeros(data.KG_SPARSE_SIZE*num_elements, dtype=INT) | ||
KGv = np.zeros(data.KG_SPARSE_SIZE*num_elements, dtype=DOUBLE) | ||
N = DOF*nx*ny | ||
|
||
init_k_KC0 = 0 | ||
|
||
quads = [] | ||
init_k_KG = 0 | ||
for n1, n2, n3, n4 in zip(n1s, n2s, n3s, n4s): | ||
pos1 = nid_pos[n1] | ||
pos2 = nid_pos[n2] | ||
pos3 = nid_pos[n3] | ||
pos4 = nid_pos[n4] | ||
|
||
quad = Quad4(probe) | ||
quad.n1 = n1 | ||
quad.n2 = n2 | ||
quad.n3 = n3 | ||
quad.n4 = n4 | ||
quad.c1 = DOF*nid_pos[n1] | ||
quad.c2 = DOF*nid_pos[n2] | ||
quad.c3 = DOF*nid_pos[n3] | ||
quad.c4 = DOF*nid_pos[n4] | ||
quad.K6ROT = 1e4 | ||
quad.init_k_KC0 = init_k_KC0 | ||
quad.init_k_KG = init_k_KG | ||
quad.update_rotation_matrix(ncoords_flatten) | ||
quad.update_probe_xe(ncoords_flatten) | ||
quad.update_KC0(KC0r, KC0c, KC0v, prop) | ||
quad.update_KG_given_stress(Nxx, 0, 0, KGr, KGc, KGv) | ||
quads.append(quad) | ||
init_k_KC0 += data.KC0_SPARSE_SIZE | ||
init_k_KG += data.KG_SPARSE_SIZE | ||
|
||
print('elements created') | ||
|
||
KC0 = coo_matrix((KC0v, (KC0r, KC0c)), shape=(N, N)).tocsc() | ||
KG = coo_matrix((KGv, (KGr, KGc)), shape=(N, N)).tocsc() | ||
|
||
print('sparse KC0 and KG created') | ||
|
||
# applying simply supported boundary conditions | ||
bk = np.zeros(N, dtype=bool) | ||
check = isclose(x_local, 0.) | isclose(x_local, a) | isclose(y_local, 0) | isclose(y_local, b) | ||
bk[0::DOF] = check | ||
bk[1::DOF] = check | ||
bk[2::DOF] = check | ||
|
||
bu = ~bk | ||
|
||
KC0uu = KC0[bu, :][:, bu] | ||
KGuu = KG[bu, :][:, bu] | ||
|
||
num_eig_lb = max(mode+1, 3) | ||
PREC = np.max(1/KC0uu.diagonal()) | ||
eigvals, eigvecsu = eigsh(A=PREC*KGuu, k=num_eig_lb, which='SM', | ||
M=PREC*KC0uu, tol=1e-9, sigma=1., mode='cayley') | ||
eigvals = -1./eigvals | ||
load_mult = eigvals[0] | ||
P_cr_calc = load_mult*Nxx*b | ||
print('linear buckling load_mult =', load_mult) | ||
print('linear buckling P_cr_calc =', P_cr_calc) | ||
|
||
kcmin = 1e6 | ||
mmin = 0 | ||
for m in range(1, 21): | ||
kc = (m*b/a + a/(m*b))**2 | ||
if kc <= kcmin: | ||
kcmin = kc | ||
mmin = m | ||
sigma_cr = -kcmin*np.pi**2*E/(12*(1-nu**2))*h**2/b**2 | ||
P_cr_theory = sigma_cr*h*b | ||
print('Theoretical P_cr_theory', P_cr_theory) | ||
assert isclose(P_cr_theory, P_cr_calc, rtol=0.03) | ||
|
||
|
||
|
||
if plot: | ||
import matplotlib | ||
matplotlib.use('TkAgg') | ||
import matplotlib.pyplot as plt | ||
|
||
u = np.zeros(N) | ||
u[bu] = eigvecsu[:, mode] | ||
|
||
plt.clf() | ||
plt.contourf(xmesh, ymesh, u[2::DOF].reshape(nx, ny).T) | ||
plt.show() | ||
|
||
|
||
if __name__ == '__main__': | ||
test_linear_buckling_plate(plot=True, mode=0) |