Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BUGFIX] Fix gated activations in WaveNet #131

Merged
merged 3 commits into from
Oct 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 7 additions & 8 deletions NAM/wavenet.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -37,15 +37,14 @@ void nam::wavenet::_Layer::process_(const Eigen::MatrixXf& input, const Eigen::M
}
else
{
this->_activation->apply(this->_z.topRows(channels));
activations::Activation::get_activation("Sigmoid")->apply(this->_z.bottomRows(channels));
// activations::Activation::get_activation("Sigmoid")->apply(this->_z.block(channels, 0, channels,
// this->_z.cols()));

// CAREFUL: .topRows() and .bottomRows() won't be memory-contiguous for a column-major matrix (Issue 125). Need to
// do this column-wise:
for (long i = 0; i < _z.cols(); i++)
{
this->_activation->apply(this->_z.block(0, i, channels, 1));
activations::Activation::get_activation("Sigmoid")->apply(this->_z.block(channels, i, channels, 1));
}
this->_z.topRows(channels).array() *= this->_z.bottomRows(channels).array();
// this->_z.topRows(channels) = this->_z.topRows(channels).cwiseProduct(
// this->_z.bottomRows(channels)
// );
}

head_input += this->_z.topRows(channels);
Expand Down
3 changes: 3 additions & 0 deletions tools/run_tests.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
#include "test/test_activations.cpp"
#include "test/test_dsp.cpp"
#include "test/test_get_dsp.cpp"
#include "test/test_wavenet.cpp"

int main()
{
Expand Down Expand Up @@ -32,6 +33,8 @@ int main()
test_get_dsp::test_null_input_level();
test_get_dsp::test_null_output_level();

test_wavenet::test_gated();

std::cout << "Success!" << std::endl;
return 0;
}
76 changes: 76 additions & 0 deletions tools/test/test_wavenet.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
// Tests for the WaveNet

#include <Eigen/Dense>
#include <cassert>
#include <iostream>

#include "NAM/wavenet.h"

namespace test_wavenet
{
void test_gated()
{
// Assert correct nuemrics of the gating activation.
// Issue 101
const int conditionSize = 1;
const int channels = 1;
const int kernelSize = 1;
const int dilation = 1;
const std::string activation = "ReLU";
const bool gated = true;
auto layer = nam::wavenet::_Layer(conditionSize, channels, kernelSize, dilation, activation, gated);

// Conv, input mixin, 1x1
std::vector<float> weights{
// Conv (weight, bias) NOTE: 2 channels out bc gated, so shapes are (2,1,1), (2,)
1.0f, 1.0f, 0.0f, 0.0f,
// Input mixin (weight only: (2,1,1))
1.0f, -1.0f,
// 1x1 (weight (1,1,1), bias (1,))
// NOTE: Weights are (1,1) on conv, (1,-1), so the inputs sum on the upper channel and cancel on the lower.
// This should give us a nice zero if the input & condition are the same, so that'll sigmoid to 0.5 for the
// gate.
1.0f, 0.0f};
auto it = weights.begin();
layer.set_weights_(it);
assert(it == weights.end());

const long numFrames = 4;
layer.set_num_frames_(numFrames);

Eigen::MatrixXf input, condition, headInput, output;
input.resize(channels, numFrames);
condition.resize(channels, numFrames);
headInput.resize(channels, numFrames);
output.resize(channels, numFrames);

const float signalValue = 0.25f;
input.fill(signalValue);
condition.fill(signalValue);
// So input & condition will sum to 0.5 on the top channel (-> ReLU), cancel to 0 on bottom (-> sigmoid)

headInput.setZero();
output.setZero();

layer.process_(input, condition, headInput, output, 0, 0);

// 0.25 + 0.25 -> 0.5 for conv & input mixin top channel
// (0 on bottom channel)
// Top ReLU -> preseves 0.5
// Bottom sigmoid 0->0.5
// Product is 0.25
// 1x1 is unity
// Skip-connect -> 0.25 (input) + 0.25 (output) -> 0.5 output
// head output gets 0+0.25 = 0.25
const float expectedOutput = 0.5;
const float expectedHeadInput = 0.25;
for (int i = 0; i < numFrames; i++)
{
const float actualOutput = output(0, i);
const float actualHeadInput = headInput(0, i);
// std::cout << actualOutput << std::endl;
assert(actualOutput == expectedOutput);
assert(actualHeadInput == expectedHeadInput);
}
}
}; // namespace test_wavenet
Loading