Skip to content

sejongresearch/NetVLAD-in-Colab

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 

Repository files navigation

챌린지 개요

본 챌린지는 "Visual Place Recognition (VPR)"을 수행합니다. VPR 이란 이미지의 글로벌 기술자를 추출하여 데이터베이스에 저장하고, 새롭게 들어오는 쿼리이미지에 대해서 동일하게 글로벌 기술자를 추출하여 데이터 베이스에 저장된 기술자와 비교하여 가장 유사한 영상을 검색합니다. 이를 통해 쿼리 이미지가 촬영된 곳의 위치 등을 추정할 수 있습니다. 해당 기술은 GPS를 사용할 수 없거나, 부정확한 GPS를 대체할 수 있는 기술이며, 대표적인 사례로는 네이버 랩스에서 공개한 실내 네비게이션을 예시로 들 수 있습니다. 본 챌린지에서는 VPR에서 가장 기초가되는 NetVLAD 방법론을 베이스라인으로 설정하였습니다. VPR과 관련된 자세한 내용은 발표영상을 참고하시기 바랍니다.

베이스라인 관련

데이터 셋

  • 데이터셋 명 : Berlin Kudamm Dataset
  • 학습/테스트 장수 : Reference 314장 / Query 280장
  • 데이터셋 특징

image

Berlin Kudamm Dataset 데이터셋은 경로는 같지만 시간과 뷰포인트 차이가 큰 Query/Reference 이미지 페어로 구성되어 있습니다.

참고자료

NetVLAD: CNN architecture for weakly supervised place recognition A Hierarchical Dual Model of Environment- and Place-Specific Utility for Visual Place Recognition Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Visual Place Recognition with NetVLAD

How to run

Step 1. Downloading a source code(notebook) and Berlin Kudamm dataset

Version 1

Base

Version 2

Base

Step 2. Execute all code cells in the notebook (click on the notebook toolbar or press Ctrl + Shift + Alt + Enter)

Step 2-1. Mount the Google Drive to Google Colab
from google.colab import drive
drive.mount('/content/drive')
Step 2-2. Install the faiss-gpu for Nearest Neighbor search
!pip install faiss-gpu
Step 2-3. Define the NetVLAD (This code is built mostyl based on NetVLAD-pytorch
class NetVLAD(nn.Module):
    """NetVLAD layer implementation"""

    def __init__(self, num_clusters=12, dim=128, alpha=100.0,normalize_input=True):
        """
        Args:
            num_clusters : int
                The number of clusters
            dim : int
                Dimension of descriptors
            alpha : float
                Parameter of initialization. Larger value is harder assignment.
            normalize_input : bool
                If true, descriptor-wise L2 normalization is applied to input.
        """
        super(NetVLAD, self).__init__()
        self.num_clusters = num_clusters
        self.dim = dim
        self.alpha = alpha
        self.normalize_input = normalize_input
        self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=False)
        self.centroids = nn.Parameter(torch.rand(num_clusters, dim))
        self._init_params()

    def _init_params(self):
        self.conv.weight = nn.Parameter(
            (2.0 * self.alpha * self.centroids).unsqueeze(-1).unsqueeze(-1)
        )

    def forward(self, x):

        N, C = x.shape[:2]

        if self.normalize_input:
            x = F.normalize(x, p=2, dim=1)  # across descriptor dim

        # soft-assignment
        soft_assign = self.conv(x).view(N, self.num_clusters, -1)
        soft_assign = F.softmax(soft_assign, dim=1)

        x_flatten = x.view(N, C, -1)
        
        # calculate residuals to each clusters
        vlad = torch.zeros([N, self.num_clusters, C], dtype=x.dtype, layout=x.layout, device=x.device)
        for C in range(self.num_clusters): # slower than non-looped, but lower memory usage 
            residual = x_flatten.unsqueeze(0).permute(1, 0, 2, 3) - \
                    self.centroids[C:C+1, :].expand(x_flatten.size(-1), -1, -1).permute(1, 2, 0).unsqueeze(0)
            residual *= soft_assign[:,C:C+1,:].unsqueeze(2)
            vlad[:,C:C+1,:] = residual.sum(dim=-1)

        vlad = F.normalize(vlad, p=2, dim=2)  # intra-normalization
        vlad = vlad.view(x.size(0), -1)  # flatten
        vlad = F.normalize(vlad, p=2, dim=1)  # L2 normalize

        return vlad
Step 2-3. Define VPR Model (CNN(VGG16) + NetVLAD)

image

# VGG 16
encoder = vgg16(pretrained=True)
layers = list(encoder.features.children())[:-2]

for l in layers[:-5]: 
    for p in l.parameters():
        p.requires_grad = False

model = nn.Module() 

encoder = nn.Sequential(*layers)
model.add_module('encoder', encoder)

dim = list(encoder.parameters())[-1].shape[0]  # last channels (512)

# Define model for embedding
net_vlad = NetVLAD(num_clusters=16, dim=dim)
model.add_module('pool', net_vlad)

model = model.cuda()
Step 2-4. Load the pre-trained weights from checkpoint, which was provided from here
load_model = torch.load('./pittsburgh_checkpoint.pth.tar')
model.load_state_dict(load_model['state_dict'])
Step 2-5. Creating a Dataloader (This code is built mostyl based on here)

def parse_dbStruct(path):
    mat = loadmat(path)

    matStruct = mat['dbStruct'][0]

    dataset = 'dataset'

    whichSet = 'VPR'

    dbImage = matStruct[0]
    locDb = matStruct[1]

    qImage = matStruct[2]
    locQ = matStruct[3]

    numDb = matStruct[4].item()
    numQ = matStruct[5].item()

    posDistThr = matStruct[6].item()
    posDistSqThr = matStruct[7].item()

    return dbStruct(whichSet, dataset, dbImage, locDb, qImage, 
            locQ, numDb, numQ, posDistThr, 
            posDistSqThr)
  
dbStruct = namedtuple('dbStruct', ['whichSet', 'dataset',
  'dbImage', 'locDb', 'qImage', 'locQ', 'numDb', 'numQ',
  'posDistThr', 'posDistSqThr'])
  
class BerlinDataset(data.Dataset) :
  
  def __init__(self,condition='train') :
    self.dbStruct = parse_dbStruct('/content/drive/My Drive/컴퓨터비전/NetVLAD/berlin.mat') # 필요시 경로수정
    self.input_transform = transforms.Compose([
      transforms.ToTensor(),
      transforms.Normalize(mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225]),
      ])
    
    self.condition = condition

    if self.condition == 'train' :
      self.images = [join(root_dir, dbIm.replace(' ','')) for dbIm in self.dbStruct.dbImage]
    elif self.condition == 'test' :
      self.images = [join(root_dir, qIm.replace(' ','')) for qIm in self.dbStruct.qImage]
    else :
      self.images = [join(root_dir, dbIm.replace(' ','')) for dbIm in self.dbStruct.dbImage]
    
    self.positives = None
    self.distances = None

    self.getPositives()
  
  def __getitem__(self, index):

      if self.condition == 'train' :
        img = Image.open(self.images[index])
        img = self.input_transform(img)

        pos_list = self.positives[index].tolist()
        pos_list.remove(index)
        pos_index = self.positives[index][np.random.randint(0,len(self.positives[index]))]
        pos_img = Image.open(self.images[pos_index])
        pos_img = self.input_transform(pos_img)

        pos_list = pos_list + [index]
        neg_index = choice([i for i in range(len(self.images)) if i not in pos_list])
        neg_img = Image.open(self.images[neg_index])
        neg_img = self.input_transform(neg_img)

        img = torch.stack([img,pos_img,neg_img],dim=0)
        label = torch.Tensor([0, 0, 1])

        return img, label

      elif self.condition == 'test' :
        img = Image.open(self.images[index])
        img = self.input_transform(img)

        return img
      
      else :
        img = Image.open(self.images[index])
        img = self.input_transform(img)

        return img


  def __len__(self):
      return len(self.images)

  def getPositives(self):
      # positives for evaluation are those within trivial threshold range
      #fit NN to find them, search by radius
      if  self.condition == 'train' :
          knn = NearestNeighbors(n_jobs=1)
          knn.fit(self.dbStruct.locDb)

          self.distances, self.positives = knn.radius_neighbors(self.dbStruct.locDb,radius=self.dbStruct.posDistThr)
      else :
          knn = NearestNeighbors(n_jobs=1)
          knn.fit(self.dbStruct.locDb)

          self.distances, self.positives = knn.radius_neighbors(self.dbStruct.locQ,
                  radius=self.dbStruct.posDistThr)
      
      return self.positives
Step 2-6. Fine-tuning with Berlin Kudamm dataset
epochs = 5
global_batch_size = 8
lr = 0.00001
momentum = 0.9
weightDecay = 0.001
losses = AverageMeter()
best_loss = 100.0
margin = 0.1 

criterion = nn.TripletMarginLoss(margin=margin**0.5, p=2, reduction='sum').cuda()
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=lr, momentum=momentum, weight_decay=weightDecay)

model.train()

for epoch in range(epochs):
  for batch_idx, (train_image,train_label) in enumerate(train_loader) :
    output_train = model.encoder(train_image.squeeze().cuda())
    output_train = model.pool(output_train)
    triplet_loss = criterion(output_train[0].reshape(1,-1),output_train[1].reshape(1,-1),output_train[2].reshape(1,-1))

    if batch_idx == 0 :
      optimizer.zero_grad()

    triplet_loss.backward(retain_graph=True)
    losses.update(triplet_loss.item())

    if (batch_idx +1) % global_batch_size == 0 :
      for name, p in model.named_parameters():
        if p.requires_grad:
          p.grad /= global_batch_size
    
        optimizer.step()
        optimizer.zero_grad()

    if batch_idx % 20 == 0 and batch_idx != 0:
      print('epoch : {}, batch_idx  : {}, triplet_loss : {}'.format(epoch,batch_idx,losses.avg))
  
  if best_loss > losses.avg :
    best_save_name = 'best_model.pt'
    best_path = F"./ckpt/{best_save_name}" 
    torch.save(model.state_dict(), best_path)
    
  model_save_name = 'model_{:02d}.pt'.format(epoch)
  path = F"./ckpt/{model_save_name}" 
  torch.save(model.state_dict(), path)
Step 2-7. Extract NetVLAD descriptors from Reference and Query
from tqdm import tqdm

cluster_dataset = BerlinDataset(condition="cluster")
cluster_loader = torch.utils.data.DataLoader(cluster_dataset, batch_size=1,shuffle=False,num_workers=0) 

train_feature_list = list()

model.eval()

with torch.no_grad():
  for batch_idx, train_image in tqdm(enumerate(cluster_loader)) :
    output_train = model.encoder(train_image.cuda())
    output_train = model.pool(output_train)
    train_feature_list.append(output_train.squeeze().detach().cpu().numpy())

train_feature_list = np.array(train_feature_list)
test_dataset = BerlinDataset(condition="test")
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1,shuffle=False,num_workers=0) 

test_feature_list = list()

with torch.no_grad():
  for batch_idx, test_image in tqdm(enumerate(test_loader)) :
    output_test = model.encoder(test_image.cuda())
    output_test = model.pool(output_test)
    test_feature_list.append(output_test.squeeze().detach().cpu().numpy())

test_feature_list = np.array(test_feature_list)

Step 2-8. Predict the top-20 highest probability reference indices using fassi
import faiss

n_values = [1,5,10,20]

faiss_index = faiss.IndexFlatL2(train_feature_list.shape[1])
faiss_index.add(train_feature_list)
_, predictions = faiss_index.search(test_feature_list, max(n_values))


Step 3. Submit to EvalAI for Class

Step 3-1. Make 'submission.json'
import json

file_path = "./submit.json"

data = {}
data['Query'] = list()

for i in range(len(predictions)) :
  data_t = [("id",i),("positive",predictions[i].tolist())]
  data_t = dict(data_t)
  data['Query'].append(data_t)
  
with open(file_path, 'w') as outfile:
    json.dump(data, outfile, indent=4)
Step 3-2. Submit to EvalAI

image

Step 4. Check VPR

input_transform = transforms.Compose([
      transforms.ToTensor(),
      transforms.Normalize(mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225]),
      ])

plot_dbStruct = parse_dbStruct('/content/drive/My Drive/컴퓨터비전/NetVLAD/berlin.mat')

db_images = [join(root_dir, dbIm.replace(' ','')) for dbIm in plot_dbStruct.dbImage]
q_images = [join(root_dir, qIm.replace(' ','')) for qIm in plot_dbStruct.qImage]

from IPython.display import display

index = 5

q_img = Image.open(q_images[index])
display(q_img)
q_img = input_transform(q_img)

image

output_test = model.encoder(q_img.unsqueeze(dim=0).cuda())
output_test = model.pool(output_test)
query_feature = output_test.squeeze().detach().cpu().numpy()

_, predictions = faiss_index.search(query_feature.reshape(1,-1), 5)

for idx in predictions[0]:
  db_img = Image.open(db_images[idx])
  db_img = db_img.resize((int(db_img.width / 2), int(db_img.height / 2)))
  display(db_img)
  print("\n")

image image image image

Reference code

NetVLAD-pytorch
A Hierarchical Dual Model of Environment- and Place-Specific Utility for Visual Place Recognition

About

2021-Fall-ComputerVision

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%