Skip to content

shangzongjiang/Ada-MSHyper

Repository files navigation

Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting

✨ This repo is the official implementation of Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting.

1 The framework of Ada-MSHyper

Ada-MSHyper is proposed to promote more comprehensive pattern interactions at different scales, which consist of four main parts: Multi-scale Feature Extraction (MFE) Module, Adaptive Hypergraph Learning (AHL) Module, Multi-Scale Interaction Module, and Multi-Scale Fusion Module. The overall framework of Ada-MSHyper is shown as follows: framework

2 Prerequisites

  • Python 3.8.5
  • PyTorch 1.13.1
  • math, sklearn, numpy, torch_geometric

3 Datasets && Description

dataset-statistics 📦 You can download the all datasets from datasets. All the datasets are well pre-processed and can be used directly.

4 Running

4.1 Install all dependencies listed in prerequisites

4.2 Download the dataset

4.3 Training

🚀 We provide the experiment scripts of Ada-MSHyper on all dataset under the folder ./scripts. You can obtain the full results by running the following command:

# Train on ETTh1
sh ./scripts/Long-range/ETTh1.sh
# Train on ETTh2
sh ./scripts/Long-range/ETTh2.sh
# Train on ETTm1
sh ./scripts/Long-range/ETTm1.sh
# Train on ETTm2
sh ./scripts/Long-range/ETTm2.sh
# Train on Traffic
sh ./scripts/Long-range/traffic.sh
# Train on Electricity
sh ./scripts/Long-range/electricity.sh
# Train on Weather
sh ./scripts/Long-range/traffic.sh

or obtain specific results by runinng the following command:

# Train on Electricity
python run_longExp.py -data elect -input_size 96 -predict_step 96 -root_path ./data/Electricity/ -data_path electricity.csv -CSCM Conv_Construct
# Train on ETTh1
python -u run_longExp.py --is_training 1 --root_path ./dataset/ --data_path ETTh1.csv --model_id ETTh1_96_192 --model ASHyper --CSCM Bottleneck_Construct --data ETTh1 --features M --seq_len 96 --pred_len 192 --enc_in 7 --des 'Exp' --itr 1 --batch_size 16 --learning_rate 0.0001
# Train on ETTh2
python -u run_longExp.py --is_training 1 --root_path ./dataset/ --data_path ETTh2.csv --model_id ETTh2_96_96 --model ASHyper --CSCM Bottleneck_Construct --data ETTh2 --features M --seq_len 96 --pred_len 96 --enc_in 7 --des 'Exp' --itr 1 --batch_size 32 --learning_rate 0.0001
# Train on ETTm1
python -u run_longExp.py --is_training 1 --root_path ./dataset/ --data_path ETTm1.csv --model_id ETTm1_96_96 --model ASHyper --CSCM Bottleneck_Construct --data ETTm1 --features M --seq_len 96 --pred_len 96 --enc_in 7 --des 'Exp' --itr 1 --batch_size 8 --learning_rate 0.0001
# Train on ETTm2
python -u run_longExp.py --is_training 1 --root_path ./dataset/ --data_path ETTm2.csv --model_id ETTm2_96_96 --model ASHyper --CSCM Bottleneck_Construct --data ETTm2 --features M --seq_len 96 --pred_len 96 --enc_in 7 --des 'Exp' --itr 1 --batch_size 32 --learning_rate 0.001
# Train on Traffic
python -u run_longExp.py --is_training 1 --root_path ./dataset/ --data_path traffic.csv --model_id traffic_96_96 --model ASHyper --CSCM Bottleneck_Construct --data custom --features M --seq_len 96 --pred_len 96 --enc_in 862 --des 'Exp' --itr 1 --batch_size 16 --learning_rate 0.0001
# Train on Electricity
python run_longExp.py --is_training 1 --root_path ./dataset/ --data_path electricity.csv --model_id elect_96_96 --model ASHyper --CSCM Bottleneck_Construct  --data custom --features M --seq_len 96 --pred_len 96 --enc_in 321 --des 'Exp' --itr 1 --batch_size 16 --learning_rate 0.0001
# Train on Weather
python -u run_longExp.py --is_training 1 --root_path ./dataset/ --data_path weather.csv --model_id weather_96_96 --model ASHyper --CSCM Bottleneck_Construct --data custom --features M --seq_len 96 --pred_len 96 --enc_in 21 --des 'Exp' --itr 1 --batch_size 16 --learning_rate 0.0001

5 Main results

We conduct extensive experiments to evaluate the performance and efficiency of Ada-MSHyper, covering long-range, short-range, and ultra-long-range time series forecasting, including 11 real-world benchmarks and 13 baselines.

🏆 Ada-MSHyper achieves consistent state-of-the-art performance on all benchmarks, covering a large variety of series with different frequencies, variate numbers and real-world scenarios.

5.1 Long-range forecasting

5.1.1 Long-range forecasting under multivariate settings.

long-range-multivariate full-long-range-multivariate

5.2 Long-range forecasting under univariate settings.

long-range-univariate full-long-range-univariate

5.2 Short-range forecasting

short-range short-range

5.3 Ultra-long-range forecasting

Ultra-long-range full-Ultra-long-range

Citation

😀 If you find this repo useful, please cite our paper.

@inproceedings{shangada,
  title={Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting},
  author={Shang, Zongjiang and Chen, Ling and Wu, Binqing and Cui, Dongliang},
  booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems},
  year={2024}
}

Concat

If you have any questions, please feel free to contact zongjiangshang@cs.zju.edu.cn

Other works

📝 Our other works are shown as follows:

Single-step forecasting: Chen L, Chen D, Shang Z, et al. Multi-scale adaptive graph neural network for multivariate time series forecasting. TKDE, 2023, 35(10): 10748-10761. Code Link

AutoML related forecasting: Chen D, Chen L, Shang Z, et al. Scale-aware neural architecture search for multivariate time series forecasting. TKDD, 2024. Code Link

Long-range time series forecasting: Shang Z, Chen L, Wu B, et al. MSHyper: Multi-Scale Hypergraph Transformer for Long-Range Time Series Forecasting. arXiv, 2024: arXiv: 2401.09261. Code Link

The code and documentation are still being finalized, and the final version will be released after the conference.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published