Skip to content

shirgur/hp-vae-gan

Repository files navigation

Hierarchical Patch VAE-GAN

Official repository of the paper "Hierarchical Patch VAE-GAN: Generating Diverse Videos from a Single Sample" (NeurIPS 2020)

Project | arXiv | Code

Real Videos







Fake Videos







Environment setting

Use commands in env.sh to setup the correct conda environment

Colab

An example for training and extracting samples for image generation. The same can be easily modified for video generation using *_video(s).py files. https://colab.research.google.com/drive/1SmxFVqUvEkU7pHIwyLUz4VM1AxoVU-ER?usp=sharing

Training Video

For training a single video, use the following command for example:

CUDA_VISIBLE_DEVICES=0 python train_video.py --video-path data/vids/air_balloons.mp4 --vae-levels 3 --checkname myvideotest --visualize

Common training options:

# Networks Hyper Parameters
--nfc                model basic # channels
--latent-dim         Latent dim size
--vae-levels         # VAE levels
--generator          generator mode

# Optimization hyper parameters
--niter              number of iterations to train per scale
--rec-weight         reconstruction loss weight
--train-all          train all levels w.r.t. train-depth

# Dataset
--video-path         video path (required)
--start-frame        start frame number
--max-frames         # frames to save
--sampling-rates     sampling rates

# Misc
--visualize     visualize using tensorboard

Training Image

For training a single video, use the following command for example:

CUDA_VISIBLE_DEVICES=0 python train_image.py --image-path data/imgs/air_balloons.jpg --vae-levels 3 --checkname myimagetest --visualize

Training baselines for video

For training a single video using SinGan re-implementation, use the following command:

CUDA_VISIBLE_DEVICES=0 python train_video_baselines.py --video-path data/vids/air_balloons.mp4 --checkname myimagetest --visualize --generator GeneratorSG --train-depth 1

Generating Samples

Use eval_*.py to generate samples from an "experiment" folder created during training. The code uses Glob package for multiple experiments evaluation, for example, the following line will generate 100 video samples for all trained movies:

python eval_video.py --num-samples 100 --exp-dir run/**/*/experiment_0

results are saved under run/**/*/experiment_0/eval

In order to extract gifs and images, use the extract_*.py files similarly:

python eval_video.py --max-samples 4 --exp-dir run/**/*/experiment_0/eval

results are saved under run/**/*/experiment_0/eval/gifs(images).

Citation

If you found this work useful, please cite.

@article{gur2020hierarchical,
  title={Hierarchical Patch VAE-GAN: Generating Diverse Videos from a Single Sample},
  author={Gur, Shir and Benaim, Sagie and Wolf, Lior},
  journal={arXiv preprint arXiv:2006.12226},
  year={2020}
}

About

Official repository for HP-VAE-GAN

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published