Deploy your ML models in minutes, not weeks.
Detailed documentation can be found here
Airdot Deployer will automatically:
- Restructure your Python code (from Jupyter Notebook/local IDEs) into modules.
- Builds a REST API around your code.
- Conterize the app.
- Spins up the required hardware (local or K8s or cloud).
- Monitors for model/data drift and performance (in development)
from airdot.deployer import Deployer
deployer_obj = Deployer().run(<your-ml-predictor>)
Once deployed, your model will be up and running on the intra/internet, accessible to your users. No more worrying about complex server setups or manual configuration. Airdot Deployer does all the heavy lifting for you.
curl -XPOST <url> -H 'Content-Type: application/json' -d '{"args": "some-value"}'
Whether you're a data scientist, developer, or tech enthusiast, Airdot Deployer empowers you to showcase your machine learning prowess and share your creations effortlessly.
Before we get started, you'll need to have Docker, Docker Compose, and s2i installed on your machine. If you don't have these installed yet, no worries! Follow the steps below to get them set up:
Please visit the appropriate links to install Docker on your machine:
For Mac You can either follow the installation instructions for Linux (and use the darwin-amd64 link) or you can just install source-to-image with Homebrew:
$ brew install source-to-image
For Linux just run following command
curl -s https://api.github.com/repos/openshift/source-to-image/releases/latest| grep browser_download_url | grep linux-amd64 | cut -d '"' -f 4 | wget -qi -
For Windows please follow instruction here
Install the Airdot Deployer package using pip:
pip install "git+https://github.com/airdot-io/airdot-deployer.git@main#egg=airdot"
pip install airdot
docker network create minio-network && wget https://raw.githubusercontent.com/airdot-io/airdot-deployer/main/docker-compose.yaml && docker-compose -p airdot up
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from airdot.deployer import Deployer
from sklearn import datasets
import pandas as pd
import numpy as np
iris = datasets.load_iris()
iris = pd.DataFrame(
data= np.c_[iris['data'], iris['target']],
columns= iris['feature_names'] + ['target']
)
X = iris.drop(['target'], axis=1)
X = X.to_numpy()[:, (2,3)]
y = iris['target']
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.5, random_state=42)
log_reg = LogisticRegression()
log_reg.fit(X_train,y_train)
def predict(value):
return log_reg.predict(value)
deployer_obj = Deployer().run(predict)
curl -XPOST http://127.0.0.1:8000 -H 'Content-Type: application/json' -d '{"value": [[4.7, 1.2]]}'
deployer.stop('predict') # to stop container
Note - This method will use your current cluster and uses seldon-core to deploy
from airdot import Deployer
import pandas as pd
# this is using default seldon-deployment configuration.
config = {
'deployment_type':'seldon',
'bucket_type':'minio',
'image_uri':'<registry>/get_value_data:latest'
}
deployer = Deployer(deployment_configuration=config)
df2 = pd.DataFrame(data=[[10,20],[10,40]], columns=['1', '2'])
def get_value_data(cl_idx='1'):
return df2[cl_idx].values.tolist()
deployer.run(get_value_data)
from airdot import Deployer
import pandas as pd
# this is using default seldon-deployment configuration.
config = {
'deployment_type':'seldon',
'bucket_type':'minio',
'image_uri':'<registry>/get_value_data:latest',
'seldon_configuration': '' # your custom seldon configuration
}
deployer = Deployer(deployment_configuration=config)
df2 = pd.DataFrame(data=[[10,20],[10,40]], columns=['1', '2'])
def get_value_data(cl_idx='1'):
return df2[cl_idx].values.tolist()
deployer.run(get_value_data)