Skip to content

Demonstration of LUME-Impact running a live model fetching data from the LCLS EPICS network

License

Notifications You must be signed in to change notification settings

singh96aman/lume-impact-live-demo

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

lume-impact-live-demo

Demonstration of LUME-Impact running a live model fetching data from the LCLS EPICS network

Setup

Make the lume-live-dev environment: conda env create --file environment-dev.yml

Convert notebooks to .py files:

./build.bash

EPICS:

ssh -fN -L 24666:lcls-prod01.slac.stanford.edu:5068 centos7.slac.stanford.edu
export EPICS_CA_NAME_SERVERS=localhost:24666

Test with: caget KLYS:LI22:11:KPHR

Run

For example, LCLS on SDF:

python lume-impact-live-demo.py

TOML properties file

Running the simulation requires definition of the following variables within a toml file:

Variable Description
host Host of Impact sim
config_file Impact configuration file
distgen_input_file Input to distgen generation
workdir Working directory of simulation run
summary_output_dir Output directory for summary files
plot_output_dir Output directory of plot files
archive_dir Output directory for archive files
shapshot_dir Output directory for snapshot files
distgen_laser_file File for generating distgen input
num_procs Number of processes to use
mpi_run command for running mpi

Running on SDF additionally requires:

Variable Description
impact_command Command for Impact execution
impact_command_mpi Command for running MPI

Default configurations are given in the example environment files packaged with this repository.

About

Demonstration of LUME-Impact running a live model fetching data from the LCLS EPICS network

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.6%
  • Python 1.1%
  • Other 0.3%