thepi.pe is an API that can scrape multimodal data via thepipe.scrape
or extract structured data via thepipe.extract
from a wide range of sources. It is built to interface with vision-language models such as GPT-4o, and works out-of-the-box with any LLM or vector database. It can be used right away with a hosted cloud, or it can be run locally.
- Extract markdown, tables, and images from any document or webpage
- Extract complex structured data from any document or webpage
- Works out-of-the-box with LLMs, vector databases, and RAG frameworks
- AI-native filetype detection, layout analysis, and structured data extraction
- Multimodal scraping for video, audio, and image sources
thepi.pe can read a wide range of filetypes and web sources, so it requires a few dependencies. It also requires vision-language model inference for AI extraction features. For these reasons, we host an API that works out-of-the-box at thepi.pe.
For more detailed setup instructions, view the docs.
pip install thepipe-api
from thepipe.scraper import scrape_file
from thepipe.core import chunks_to_messages
from openai import OpenAI
# scrape markdown, tables, visuals
chunks = scrape_file(filepath="paper.pdf", ai_extraction=True)
# call LLM with clean, comprehensive data
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4o",
messages=chunks_to_messages(chunks),
)
For a local installation, you can use the following command:
pip install thepipe-api[local]
You must have a local LLM server setup and running for AI extraction features. You can use any local LLM server that follows OpenAI format (such as LiteLLM or OpenRouter). Next, set the LLM_SERVER_BASE_URL
environment variable to your LLM server's endpoint URL and set LLM_SERVER_API_KEY
to the API key for your LLM of choice. the DEFAULT_VLM
environment variable can be set to the model name of your LLM. For example, you may use openai/gpt-4o-mini
if using OpenRouter or gpt-4o-mini
if using OpenAI.
For full functionality with media-rich sources, you will need to install the following dependencies:
apt-get update && apt-get install -y git ffmpeg tesseract-ocr
python -m playwright install --with-deps chromium
When using thepi.pe, be sure to append local=True
to your function calls:
chunks = scrape_url(url="https://example.com", local=True)
You can also use thepi.pe from the command line:
thepipe path/to/folder --include_regex .*\.tsx --local
Source | Input types | Multimodal | Notes |
---|---|---|---|
Webpage | URLs starting with http , https , ftp |
✔️ | Scrapes markdown, images, and tables from web pages. ai_extraction available for AI content extraction from the webpage's screenshot |
.pdf |
✔️ | Extracts page markdown and page images. ai_extraction available for AI layout analysis |
|
Word Document | .docx |
✔️ | Extracts text, tables, and images |
PowerPoint | .pptx |
✔️ | Extracts text and images from slides |
Video | .mp4 , .mov , .wmv |
✔️ | Uses Whisper for transcription and extracts frames |
Audio | .mp3 , .wav |
✔️ | Uses Whisper for transcription |
Jupyter Notebook | .ipynb |
✔️ | Extracts markdown, code, outputs, and images |
Spreadsheet | .csv , .xls , .xlsx |
❌ | Converts each row to JSON format, including row index for each |
Plaintext | .txt , .md , .rtf , etc |
❌ | Simple text extraction |
Image | .jpg , .jpeg , .png |
✔️ | Uses pytesseract for OCR in text-only mode |
ZIP File | .zip |
✔️ | Extracts and processes contained files |
Directory | any path/to/folder |
✔️ | Recursively processes all files in directory |
YouTube Video (known issues) | YouTube video URLs starting with https://youtube.com or https://www.youtube.com . |
✔️ | Uses pytube for video download and Whisper for transcription. For consistent extraction, you may need to modify your pytube installation to send a valid user agent header (see this issue). |
Tweet | URLs starting with https://twitter.com or https://x.com |
✔️ | Uses unofficial API, may break unexpectedly |
GitHub Repository | GitHub repo URLs starting with https://github.com or https://www.github.com |
✔️ | Requires GITHUB_TOKEN environment variable |
thepi.pe uses computer vision models and heuristics to extract clean content from the source and process it for downstream use with language models, or vision transformers. The output from thepi.pe is a list of chunks containing all content within the source document. These chunks can easily be converted to a prompt format that is compatible with any LLM or multimodal model with thepipe.core.chunks_to_messages
, which gives the following format:
[
{
"role": "user",
"content": [
{
"type": "text",
"text": "..."
},
{
"type": "image_url",
"image_url": {
"url": "data:image/jpeg;base64,..."
}
}
]
}
]
You can feed these messages directly into the model, or alternatively you can use chunker.chunk_by_document
, chunker.chunk_by_page
, chunker.chunk_by_section
, chunker.chunk_semantic
to chunk these messages for a vector database such as ChromaDB or a RAG framework. A chunk can be converted to LlamaIndex Document/ImageDocument with .to_llamaindex
.
⚠️ It is important to be mindful of your model's token limit. GPT-4o does not work with too many images in the prompt (see discussion here). To remedy this issue, either use an LLM with a larger context window, extract larger documents withtext_only=True
, or embed the chunks into vector database.
Thank you to Cal.com for sponsoring this project.