Advances in Image Manipulation, European Conference on Computer Vision Workshops (ECCVW) 2022
- Authors: Snehal Singh Tomar, Maitreya Suin, and A.N. Rajagopalan
- Paper: ECCVW 2022 arXiv preprint
Our setup for this project entailed the following:
- CUDA 10.0, cuDNN 7.5.0, Python 3.6, Pytorch 0.4.1, Torchvision 0.2.1, OpenCV 3.3.1, and Ubuntu 20.04.
- Upon cloning the repository, please place the KITTI Dataset in "kitti_data/" before running any experiments.
Please run:
python train_w_lrl_hrl.py --model_name <desired_model_name> --png
The "--png" option may be omitted if the KITTI Dataset has been downloaded in ".jpg" file format. The model files will be saved at "model_under_trg/desired_model_name/" by default.
To generate predicted depth maps, run:
python export_gt_depth.py --data_path kitti_data --split eigen
To evaluate a particular model, run:
python evaluate_depth.py --load_weights_folder <path_to_model_weights> --eval_mono
If you use this code, please cite our paper:
@inproceedings{tomar2022hybrid,
title={Hybrid Transformer Based Feature Fusion for Self-Supervised Monocular Depth Estimation},
author={Tomar, Snehal Singh and Suin, Maitreya and Rajagopalan, A.N.},
booktitle={Advances in Image Manipulation, European Conference on Computer Vision Workshops (ECCVW) 2022},
year={2022}
}
This code is for non-commercial use only. Please refer to our License file for more.
This implementation borrows heavily from Monodepth2, and draws inspiration from the DIFFNet.