Skip to content

speshowBUAA/PointPillars_mmdet_secfpn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

English | 简体中文

PointPillars

High performance version of 3D object detection network -PointPillars, which can achieve the real-time processing (less than 1 ms / head)

  1. The inference part of PointPillars(pfe , backbone(multihead)) is optimized by tensorrt
  2. The pre- and post- processing are optimized by CUDA / C + recode.

Major Advance

Requirements (My Environment)

For *.onnx and *.trt engine file

  • Linux Ubuntu 18.04
  • mmdetection3d
  • ONNX IR version: 0.0.6
  • onnx2trt

For algorithm:

  • Linux Ubuntu 18.04
  • CMake 3.17
  • CUDA 10.2
  • TensorRT 7.1.3
  • yaml-cpp
  • google-test (not necessary)

For visualization

Usage

  1. clone thest two repositories, and make sure the dependences is complete

    mkdir workspace && cd workspace
    git clone https://github.com/speshowBUAA/PointPillars_mmdet_secfpn.git --recursive && cd ..
  2. generate engine file

    • 1.1 Pytorch model --> ONNX model : Please refer to speshowBUAA/mmdet3d_onnx_tools.

    • 1.2 ONNX model --> TensorRT model : after install the onnx2trt, things become very simple. Note that if you want to further improve the the inference speed, you must use half precision or mixed precision(like ,-d 16)

          onnx2trt pts_pfe.onnx -o pts_pfe.trt -b 1 -d 16 
          onnx2trt pts_backbone.onnx -o pts_backbone.trt -b 1 -d 16 
    • 1.3 engine file --> algorithm : Specified the path of engine files(*.onnx , *.trt) inbootstrap.yaml.

    • 1.4 Download the test pointcloud nuscenes_10sweeps_points.txt, and specified the path in bootstrap.yaml.

  3. Compiler

    cd PointPillars_mmdet_secfpn
    mkdir build && cd build
    cmake .. && make -j8 && ./test/test_model
  4. Visualization

    cd PointPillars_mmdet_secfpn/tools
    python viewer.py

GNU General Public License v3.0 or later See COPYING to see the full text.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published