Deep learning docker files and docker images for geospatial anaysis. It contains the most popular deep learning frameworks(PyTorch and Tensorflow) with CPU and GPU support (CUDA and cuDNN included). And some other commonly used packages in machine learning and geospatial anaysis.
Docker Hub: deepgeo
- all-cpu-torch1.0.1-tf0.12.0
- all-cuda10-cudnn7-runtime-torch1.0.1-tf0.12.0
- all-cuda10-cudnn7-devel-torch1.0.1-tf0.12.0
- pytorch-1.0.1-cuda10-runtime
- pytorch-1.0.1-cuda10-devel
- tensorflow-0.12.0-cuda10-runtime
- tensorflow-0.12.0-cuda10-devel
- tensorflow
- keras
- pytorch
- scikit-learn
- scikit-image
- xgboost
- GDAL
- fiona
- shapely
- rasterio
- tifffile
- geopandas
- numpy
- scipy
- OpenCV
- Pillow
- jupyter
- matplotlib
- pandas
docker build -t REPOSITORY:TAG -f Dockerfile .
- cpu version:
docker pull sshuair/deepgeo:[TAG]
- gpu version:
docker pull sshuair/deepgao:[TAG]
- cpu:
docker run -it --name [CONTAINER-NAME] -p 8888:8888 -p 6006:6006 -v /sharedfolder:/workdir sshuair/deepgeo:[TAG] bash
- gpu:
nvidia-docker run -it --name [CONTAINER-NAME] -p 8888:8888 -p 6006:6006 -v /sharedfolder:/workdir sshuair/deepgeo:[TAG] bash
If you want run jupyter notebook in a docker container you should use the follow command in a running docker container:
jupyter notebook --allow-root