Skip to content

Multiply a double-precision floating-point vector by a constant.

License

Notifications You must be signed in to change notification settings

stdlib-js/blas-base-dscal

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

88 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

dscal

NPM version Build Status Coverage Status

Multiply a double-precision floating-point vector x by a constant alpha.

Installation

npm install @stdlib/blas-base-dscal

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var dscal = require( '@stdlib/blas-base-dscal' );

dscal( N, alpha, x, stride )

Multiplies a double-precision floating-point vector x by a constant alpha.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );

dscal( x.length, 5.0, x, 1 );
// x => <Float64Array>[ -10.0, 5.0, 15.0, -25.0, 20.0, 0.0, -5.0, -15.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • alpha: scalar constant.
  • x: input Float64Array.
  • stride: index increment.

The N and stride parameters determine which elements in x are accessed at runtime. For example, to multiply every other value by a constant

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );

dscal( 4, 5.0, x, 2 );
// x => <Float64Array>[ -10.0, 1.0, 15.0, -5.0, 20.0, 0.0, -5.0, -3.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );

// Initial array...
var x0 = new Float64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );

// Create an offset view...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

// Scale every other value...
dscal( 3, 5.0, x1, 2 );
// x0 => <Float64Array>[ 1.0, -10.0, 3.0, -20.0, 5.0, -30.0 ]

If N is less than or equal to 0, the function returns x unchanged.

dscal.ndarray( N, alpha, x, stride, offset )

Multiplies a double-precision floating-point vector x by a constant alpha using alternative indexing semantics.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );

dscal.ndarray( x.length, 5.0, x, 1, 0 );
// x => <Float64Array>[ -10.0, 5.0, 15.0, -25.0, 20.0, 0.0, -5.0, -15.0 ]

The function has the following additional parameters:

  • offset: starting index.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to multiply the last three elements of x by a constant

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );

dscal.ndarray( 3, 5.0, x, 1, x.length-3 );
// x => <Float64Array>[ 1.0, -2.0, 3.0, -20.0, 25.0, -30.0 ]

Notes

  • If N <= 0, both functions return x unchanged.
  • dscal() corresponds to the BLAS level 1 function dscal.

Examples

var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var dscal = require( '@stdlib/blas-base-dscal' );

var opts = {
    'dtype': 'float64'
};
var x = discreteUniform( 10, -100, 100, opts );
console.log( x );

dscal( x.length, 5.0, x, 1 );
console.log( x );

C APIs

Usage

#include "stdlib/blas/base/dscal.h"

c_dscal( N, alpha, *X, stride )

Multiplies each element of a double-precision floating-point vector by a constant.

double x[] = { 1.0, 2.0, 3.0, 4.0 };

c_dscal( 4, 5.0, x, 1 );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • alpha: [in] double scalar constant.
  • X: [inout] double* input array.
  • stride: [in] CBLAS_INT index increment for X.
void c_dscal( const CBLAS_INT N, const double alpha, double *X, const CBLAS_INT stride );

c_dscal_ndarray( N, alpha, *X, stride, offset )

Multiplies each element of a double-precision floating-point vector by a constant using alternative indexing semantics.

double x[] = { 1.0, 2.0, 3.0, 4.0 };

c_dscal_ndarray( 4, 5.0, x, 1, 0 );

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • alpha: [in] double scalar constant.
  • X: [inout] double* input array.
  • stride: [in] CBLAS_INT index increment for X.
  • offset: [in] CBLAS_INT starting index for X.
void c_dscal_ndarray( const CBLAS_INT N, const double alpha, double *X, const CBLAS_INT stride, const CBLAS_INT offset );

Examples

#include "stdlib/blas/base/dscal.h"
#include <stdio.h>

int main( void ) {
    // Create a strided array:
    double x[] = { 1.0, -2.0, 3.0, -4.0, 5.0, -6.0, 7.0, -8.0 };

    // Specify the number of elements:
    const int N = 8;

    // Specify a stride:
    const int stride = 1;

    // Scale the vector:
    c_dscal( N, 5.0, x, stride );

    // Print the result:
    for ( int i = 0; i < 8; i++ ) {
        printf( "x[ %i ] = %lf\n", i, x[ i ] );
    }

    // Scale the vector:
    c_dscal_ndarray( N, 5.0, x, -stride, N-1 );

    // Print the result:
    for ( int i = 0; i < 8; i++ ) {
        printf( "x[ %i ] = %lf\n", i, x[ i ] );
    }
}

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.