About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Solve one of the systems of equations
A*x = b
orA^T*x = b
.
var strsv = require( '@stdlib/blas-base-strsv' );
Solves one of the systems of equations A*x = b
or A^T*x = b
where b
and x
are N
element vectors and A
is an N
by N
unit, or non-unit, upper or lower triangular matrix.
var Float32Array = require( '@stdlib/array-float32' );
var A = new Float32Array( [ 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 0.0, 0.0, 1.0 ] );
var x = new Float32Array( [ 1.0, 2.0, 3.0 ] );
strsv( 'row-major', 'upper', 'no-transpose', 'unit', 3, A, 3, x, 1 );
// x => <Float32Array>[ 0.0, -4.0, 3.0 ]
The function has the following parameters:
- order: storage layout.
- uplo: specifies whether
A
is an upper or lower triangular matrix. - trans: specifies whether
A
should be transposed, conjugate-transposed, or not transposed. - diag: specifies whether
A
has a unit diagonal. - N: number of elements along each dimension of
A
. - A: input matrix stored in linear memory as a
Float32Array
. - lda: stride of the first dimension of
A
(a.k.a., leading dimension of the matrixA
). - x: input vector
Float32Array
. - sx:
x
stride length.
The stride parameters determine how elements in the input arrays are accessed at runtime. For example, to iterate over the elements of x
in reverse order,
var Float32Array = require( '@stdlib/array-float32' );
var A = new Float32Array( [ 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 0.0, 0.0, 1.0 ] );
var x = new Float32Array( [ 3.0, 2.0, 1.0 ] );
strsv( 'row-major', 'upper', 'no-transpose', 'unit', 3, A, 3, x, -1 );
// x => <Float32Array>[ 3.0, -4.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array-float32' );
// Initial arrays...
var x0 = new Float32Array( [ 1.0, 1.0, 1.0, 1.0 ] );
var A = new Float32Array( [ 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 0.0, 0.0, 1.0 ] );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
strsv( 'row-major', 'upper', 'no-transpose', 'unit', 3, A, 3, x1, 1 );
// x0 => <Float32Array>[ 1.0, 0.0, -1.0, 1.0 ]
Solves one of the systems of equations A*x = b
or A^T*x = b
, using alternative indexing semantics and where b
and x
are N
element vectors and A
is an N
by N
unit, or non-unit, upper or lower triangular matrix.
var Float32Array = require( '@stdlib/array-float32' );
var A = new Float32Array( [ 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 0.0, 0.0, 1.0 ] );
var x = new Float32Array( [ 1.0, 2.0, 3.0 ] );
strsv.ndarray( 'upper', 'no-transpose', 'unit', 3, A, 3, 1, 0, x, 1, 0 );
// x => <Float32Array>[ 0.0, -4.0, 3.0 ]
The function has the following additional parameters:
- sa1: stride of the first dimension of
A
. - sa2: stride of the second dimension of
A
. - oa: starting index for
A
. - ox: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Float32Array = require( '@stdlib/array-float32' );
var A = new Float32Array( [ 1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 0.0, 0.0, 1.0 ] );
var x = new Float32Array( [ 3.0, 2.0, 1.0 ] );
strsv.ndarray( 'upper', 'no-transpose', 'unit', 3, A, 3, 1, 0, x, -1, 2 );
// x => <Float32Array>[ 3.0, -4.0, 0.0 ]
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var strsv = require( '@stdlib/blas-base-strsv' );
var opts = {
'dtype': 'float32'
};
var N = 5;
var A = discreteUniform( N*N, -10.0, 10.0, opts );
var x = discreteUniform( N, -10.0, 10.0, opts );
strsv( 'column-major', 'upper', 'no-transpose', 'unit', N, A, N, x, 1 );
console.log( x );
strsv.ndarray( 'upper', 'no-transpose', 'unit', N, A, 1, N, 0, x, 1, 0 );
console.log( x );
npm install @stdlib/blas-base-strsv
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
TODO
TODO.
TODO
TODO
TODO
TODO
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.