Skip to content

Calculate the standard deviation of a single-precision floating-point strided array ignoring NaN values and using a one-pass trial mean algorithm.

License

Notifications You must be signed in to change notification settings

stdlib-js/stats-base-snanstdevch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

63 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

snanstdevch

NPM version Build Status Coverage Status

Calculate the standard deviation of a single-precision floating-point strided array ignoring NaN values and using a one-pass trial mean algorithm.

The population standard deviation of a finite size population of size N is given by

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2}$$

where the population mean is given by

$$\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i$$

Often in the analysis of data, the true population standard deviation is not known a priori and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population standard deviation, the result is biased and yields an uncorrected sample standard deviation. To compute a corrected sample standard deviation for a sample of size n,

$$s = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2}$$

where the sample mean is given by

$$\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i$$

The use of the term n-1 is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample standard deviation and population standard deviation. Depending on the characteristics of the population distribution, other correction factors (e.g., n-1.5, n+1, etc) can yield better estimators.

Installation

npm install @stdlib/stats-base-snanstdevch

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var snanstdevch = require( '@stdlib/stats-base-snanstdevch' );

snanstdevch( N, correction, x, stride )

Computes the standard deviation of a single-precision floating-point strided array x ignoring NaN values and using a one-pass trial mean algorithm.

var Float32Array = require( '@stdlib/array-float32' );

var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );

var v = snanstdevch( x.length, 1, x, 1 );
// returns ~2.0817

The function has the following parameters:

  • N: number of indexed elements.
  • correction: degrees of freedom adjustment. Setting this parameter to a value other than 0 has the effect of adjusting the divisor during the calculation of the standard deviation according to N-c where c corresponds to the provided degrees of freedom adjustment. When computing the standard deviation of a population, setting this parameter to 0 is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample standard deviation, setting this parameter to 1 is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
  • x: input Float32Array.
  • stride: index increment for x.

The N and stride parameters determine which elements in x are accessed at runtime. For example, to compute the standard deviation of every other element in x,

var Float32Array = require( '@stdlib/array-float32' );
var floor = require( '@stdlib/math-base-special-floor' );

var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
var N = floor( x.length / 2 );

var v = snanstdevch( N, 1, x, 2 );
// returns 2.5

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float32Array = require( '@stdlib/array-float32' );
var floor = require( '@stdlib/math-base-special-floor' );

var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = snanstdevch( N, 1, x1, 2 );
// returns 2.5

snanstdevch.ndarray( N, correction, x, stride, offset )

Computes the standard deviation of a single-precision floating-point strided array ignoring NaN values and using a one-pass trial mean algorithm and alternative indexing semantics.

var Float32Array = require( '@stdlib/array-float32' );

var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );

var v = snanstdevch.ndarray( x.length, 1, x, 1, 0 );
// returns ~2.0817

The function has the following additional parameters:

  • offset: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the standard deviation for every other value in x starting from the second value

var Float32Array = require( '@stdlib/array-float32' );
var floor = require( '@stdlib/math-base-special-floor' );

var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var N = floor( x.length / 2 );

var v = snanstdevch.ndarray( N, 1, x, 2, 1 );
// returns 2.5

Notes

  • If N <= 0, both functions return NaN.
  • If n - c is less than or equal to 0 (where c corresponds to the provided degrees of freedom adjustment and n corresponds to the number of non-NaN indexed elements), both functions return NaN.
  • The underlying algorithm is a specialized case of Neely's two-pass algorithm. As the standard deviation is invariant with respect to changes in the location parameter, the underlying algorithm uses the first strided array element as a trial mean to shift subsequent data values and thus mitigate catastrophic cancellation. Accordingly, the algorithm's accuracy is best when data is unordered (i.e., the data is not sorted in either ascending or descending order such that the first value is an "extreme" value).

Examples

var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var Float32Array = require( '@stdlib/array-float32' );
var snanstdevch = require( '@stdlib/stats-base-snanstdevch' );

var x;
var i;

x = new Float32Array( 10 );
for ( i = 0; i < x.length; i++ ) {
    x[ i ] = round( (randu()*100.0) - 50.0 );
}
console.log( x );

var v = snanstdevch( x.length, 1, x, 1 );
console.log( v );

References

  • Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." Communications of the ACM 9 (7). Association for Computing Machinery: 496–99. doi:10.1145/365719.365958.
  • Ling, Robert F. 1974. "Comparison of Several Algorithms for Computing Sample Means and Variances." Journal of the American Statistical Association 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859–66. doi:10.2307/2286154.
  • Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. "Algorithms for Computing the Sample Variance: Analysis and Recommendations." The American Statistician 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242–47. doi:10.1080/00031305.1983.10483115.
  • Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In Proceedings of the 30th International Conference on Scientific and Statistical Database Management. New York, NY, USA: Association for Computing Machinery. doi:10.1145/3221269.3223036.

See Also

  • @stdlib/stats-base/dnanstdevch: calculate the standard deviation of a double-precision floating-point strided array ignoring NaN values and using a one-pass trial mean algorithm.
  • @stdlib/stats-base/nanstdevch: calculate the standard deviation of a strided array ignoring NaN values and using a one-pass trial mean algorithm.
  • @stdlib/stats-base/snanstdev: calculate the standard deviation of a single-precision floating-point strided array ignoring NaN values.
  • @stdlib/stats-base/snanvariancech: calculate the variance of a single-precision floating-point strided array ignoring NaN values and using a one-pass trial mean algorithm.
  • @stdlib/stats-base/sstdevch: calculate the standard deviation of a single-precision floating-point strided array using a one-pass trial mean algorithm.

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.