Skip to content

stormasm/html2text

 
 

Repository files navigation

html2text

CI codecov

html2text is a Python script that converts a page of HTML into clean, easy-to-read plain ASCII text. Better yet, that ASCII also happens to be valid Markdown (a text-to-HTML format).

Usage: html2text [filename [encoding]]

Option Description
--version Show program's version number and exit
-h, --help Show this help message and exit
--ignore-links Don't include any formatting for links
--escape-all Escape all special characters. Output is less readable, but avoids corner case formatting issues.
--reference-links Use reference links instead of links to create markdown
--mark-code Mark preformatted and code blocks with [code]...[/code]

For a complete list of options see the docs

Or you can use it from within Python:

>>> import html2text
>>>
>>> print(html2text.html2text("<p><strong>Zed's</strong> dead baby, <em>Zed's</em> dead.</p>"))
**Zed's** dead baby, _Zed's_ dead.

Or with some configuration options:

>>> import html2text
>>>
>>> h = html2text.HTML2Text()
>>> # Ignore converting links from HTML
>>> h.ignore_links = True
>>> print h.handle("<p>Hello, <a href='https://www.google.com/earth/'>world</a>!")
Hello, world!

>>> print(h.handle("<p>Hello, <a href='https://www.google.com/earth/'>world</a>!"))

Hello, world!

>>> # Don't Ignore links anymore, I like links
>>> h.ignore_links = False
>>> print(h.handle("<p>Hello, <a href='https://www.google.com/earth/'>world</a>!"))
Hello, [world](https://www.google.com/earth/)!

Originally written by Aaron Swartz. This code is distributed under the GPLv3.

How to install

html2text is available on pypi https://pypi.org/project/html2text/

$ pip install html2text

How to run unit tests

tox

To see the coverage results:

coverage html

then open the ./htmlcov/index.html file in your browser.

Documentation

Documentation lives here

About

Convert HTML to Markdown-formatted text.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 62.2%
  • HTML 37.8%